Suppr超能文献

量化多导联心电图临床成分丢失的诊断措施。

Diagnostic measure to quantify loss of clinical components in multi-lead electrocardiogram.

作者信息

Tripathy R K, Sharma L N, Dandapat S

机构信息

Department of Electronics and Electrical Engineering , Indian Institute of Technology Guwahati , Guwahati 781039 , India.

出版信息

Healthc Technol Lett. 2016 Feb 23;3(1):61-6. doi: 10.1049/htl.2015.0011. eCollection 2016 Mar.

Abstract

In this Letter, a novel principal component (PC)-based diagnostic measure (PCDM) is proposed to quantify loss of clinical components in the multi-lead electrocardiogram (MECG) signals. The analysis of MECG shows that, the clinical components are captured in few PCs. The proposed diagnostic measure is defined as the sum of weighted percentage root mean square difference (PRD) between the PCs of original and processed MECG signals. The values of the weight depend on the clinical importance of PCs. The PCDM is tested over MECG enhancement and a novel MECG data reduction scheme. The proposed measure is compared with weighted diagnostic distortion, wavelet energy diagnostic distortion and PRD. The qualitative evaluation is performed using Spearman rank-order correlation coefficient (SROCC) and Pearson linear correlation coefficient. The simulation result demonstrates that the PCDM performs better to quantify loss of clinical components in MECG and shows a SROCC value of 0.9686 with subjective measure.

摘要

在本信函中,提出了一种基于新型主成分(PC)的诊断度量(PCDM),用于量化多导联心电图(MECG)信号中临床成分的损失。对MECG的分析表明,临床成分被捕获在少数几个主成分中。所提出的诊断度量被定义为原始和处理后的MECG信号的主成分之间加权百分比均方根差(PRD)的总和。权重值取决于主成分的临床重要性。PCDM在MECG增强和一种新型MECG数据缩减方案上进行了测试。将所提出的度量与加权诊断失真、小波能量诊断失真和PRD进行了比较。使用斯皮尔曼等级相关系数(SROCC)和皮尔逊线性相关系数进行定性评估。仿真结果表明,PCDM在量化MECG中临床成分的损失方面表现更好,并且与主观度量的斯皮尔曼等级相关系数值为0.9686。

相似文献

2
Multichannel ECG data compression based on multiscale principal component analysis.基于多尺度主成分分析的多通道心电图数据压缩
IEEE Trans Inf Technol Biomed. 2012 Jul;16(4):730-6. doi: 10.1109/TITB.2012.2195322. Epub 2012 Apr 19.
4
Multi-channel ECG data compression using compressed sensing in eigenspace.基于特征空间压缩感知的多通道心电图数据压缩
Comput Biol Med. 2016 Jun 1;73:24-37. doi: 10.1016/j.compbiomed.2016.03.021. Epub 2016 Mar 30.
7
Online MECG Compression Based on Incremental Tensor Decomposition for Wearable Devices.基于增量张量分解的可穿戴设备在线 MECG 压缩。
IEEE J Biomed Health Inform. 2021 Apr;25(4):1041-1051. doi: 10.1109/JBHI.2020.3017790. Epub 2021 Apr 6.
8
Information theoretic multiscale truncated SVD for multilead electrocardiogram.
Comput Methods Programs Biomed. 2016 Jun;129:109-16. doi: 10.1016/j.cmpb.2016.01.010. Epub 2016 Jan 20.

本文引用的文献

5
Exploiting prior knowledge in compressed sensing wireless ECG systems.利用压缩感知无线心电图系统中的先验知识。
IEEE J Biomed Health Inform. 2015 Mar;19(2):508-19. doi: 10.1109/JBHI.2014.2325017. Epub 2014 May 16.
6
Multichannel ECG data compression based on multiscale principal component analysis.基于多尺度主成分分析的多通道心电图数据压缩
IEEE Trans Inf Technol Biomed. 2012 Jul;16(4):730-6. doi: 10.1109/TITB.2012.2195322. Epub 2012 Apr 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验