Suppr超能文献

基于 BioID 的 SARS-CoV-2 蛋白邻近互作组图谱。

A BioID-Derived Proximity Interactome for SARS-CoV-2 Proteins.

机构信息

Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA.

Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.

出版信息

Viruses. 2022 Mar 15;14(3):611. doi: 10.3390/v14030611.

Abstract

The novel coronavirus SARS-CoV-2 is responsible for the ongoing COVID-19 pandemic and has caused a major health and economic burden worldwide. Understanding how SARS-CoV-2 viral proteins behave in host cells can reveal underlying mechanisms of pathogenesis and assist in development of antiviral therapies. Here, the cellular impact of expressing SARS-CoV-2 viral proteins was studied by global proteomic analysis, and proximity biotinylation (BioID) was used to map the SARS-CoV-2 virus-host interactome in human lung cancer-derived cells. Functional enrichment analyses revealed previously reported and unreported cellular pathways that are associated with SARS-CoV-2 proteins. We have established a website to host the proteomic data to allow for public access and continued analysis of host-viral protein associations and whole-cell proteomes of cells expressing the viral-BioID fusion proteins. Furthermore, we identified 66 high-confidence interactions by comparing this study with previous reports, providing a strong foundation for future follow-up studies. Finally, we cross-referenced candidate interactors with the CLUE drug library to identify potential therapeutics for drug-repurposing efforts. Collectively, these studies provide a valuable resource to uncover novel SARS-CoV-2 biology and inform development of antivirals.

摘要

新型冠状病毒 SARS-CoV-2 是导致当前 COVID-19 大流行的罪魁祸首,给全球带来了重大的健康和经济负担。了解 SARS-CoV-2 病毒蛋白在宿主细胞中的行为可以揭示发病机制的潜在机制,并有助于开发抗病毒疗法。在这里,通过全球蛋白质组学分析研究了表达 SARS-CoV-2 病毒蛋白对细胞的影响,并使用邻近生物素化(BioID)技术在人肺癌衍生细胞中绘制了 SARS-CoV-2 病毒-宿主互作组图谱。功能富集分析揭示了先前报道和未报道的与 SARS-CoV-2 蛋白相关的细胞途径。我们已经建立了一个网站来托管蛋白质组学数据,以允许公众访问和继续分析表达病毒-BioID 融合蛋白的细胞中的宿主-病毒蛋白关联和全细胞蛋白质组。此外,我们通过将这项研究与以前的报告进行比较,确定了 66 个高可信度的相互作用,为未来的后续研究提供了坚实的基础。最后,我们将候选相互作用物与 CLUE 药物库交叉引用,以确定药物再利用努力的潜在治疗方法。总之,这些研究为揭示新型 SARS-CoV-2 生物学和为开发抗病毒药物提供了有价值的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/494f/8951556/eb139a493d23/viruses-14-00611-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验