Mouridsen Kim, Christensen Søren, Gyldensted Louise, Ostergaard Leif
Centre for Functionally Integrative Neuroscience (CFIN), Department of Neuroradiology, Arhus University Hospital, Denmark.
Magn Reson Med. 2006 Mar;55(3):524-31. doi: 10.1002/mrm.20759.
Quantification of cerebral blood flow (CBF) using dynamic susceptibility contrast MRI requires determination of the arterial input function (AIF) representing the delivery of intravascular tracer to tissue. This is typically accomplished manually by inspection of concentration time curves (CTCs) in regions containing the ICA, VA, and MCA. This is, however, a time consuming and operator dependent procedure. We suggest a completely automatic procedure for establishing the AIF based on a cluster analysis algorithm. In 20 normal subjects CBF maps calculated in 2 slices by the automatic procedure were compared to maps obtained with AIFs selected individually by 7 experienced operators. The average manual to automatic CBF ratio was 1.03+/-0.15 in the lower slice and 1.05+/-0.12 in the upper slice, demonstrating excellent agreement between the manual and automatic method. The algorithm provides means for objectively assessing AIF candidates in local AIF search algorithms designed to reduce bias due to delay and dispersion. Given the reproducibility and speed (10 s) of the automatic method, we speculate that it will greatly improve the accuracy of perfusion images and facilitate their use in clinical diagnosis and decision-making, particularly in acute stroke but also in cerebrovascular disease in general.
使用动态磁敏感对比磁共振成像(MRI)对脑血流量(CBF)进行定量分析,需要确定代表血管内示踪剂向组织输送的动脉输入函数(AIF)。这通常是通过检查包含颈内动脉(ICA)、椎动脉(VA)和大脑中动脉(MCA)区域的浓度-时间曲线(CTC)手动完成的。然而,这是一个耗时且依赖操作者的过程。我们提出了一种基于聚类分析算法建立AIF的完全自动化程序。在20名正常受试者中,将通过该自动化程序在2个层面计算得到的CBF图与由7名经验丰富的操作者分别选择AIF获得的图进行比较。在下层面,手动测量与自动测量的CBF平均比值为1.03±0.15,在上层面为1.05±0.12,表明手动方法与自动方法之间具有极好的一致性。该算法为在旨在减少因延迟和弥散导致的偏差的局部AIF搜索算法中客观评估AIF候选者提供了手段。鉴于自动方法的可重复性和速度(10秒),我们推测它将大大提高灌注图像的准确性,并促进其在临床诊断和决策中的应用,特别是在急性卒中以及一般脑血管疾病中。