Lin Jisheng, Kaltoft Margit S, Brandao Angela P, Echaniz-Aviles Gabriela, Brandileone M Cristina C, Hollingshead Susan K, Benjamin William H, Nahm Moon H
Department of Pathology, University of Alabama at Birmingham, 845 19th Street South (BBRB 614), Birmingham, AL 35249-7331, USA.
J Clin Microbiol. 2006 Feb;44(2):383-8. doi: 10.1128/JCM.44.2.383-388.2006.
We have recently developed a rapid pneumococcal serotyping method called "multibead assay" (J. Yu et al., J. Clin. Microbiol. 43:156-162, 2005) based on a multiplexed immunoassay for capsular polysaccharides in lysates of pneumococcal cultures. The multibead assay can identify 36 serotypes (1, 2, 3, 4, 5, 6A, 6B, 7A/7F, 8, 9L/9N, 9V, 10A/10B/39/33C, 11A/11D/11F, 12A/12B/12F, 14, 15B/5C, 17F, 18C, 19A, 19F, 20, 22A/22F, 23F, and 33A/33F). More than 90% of the U.S. isolates express one of these serotypes (J. B. Robbins et al., J. Infect. Dis. 148:1136-1159, 1983). To validate the new assay, we examined 495 clinical isolates of pneumococci obtained in Brazil, Denmark, and Mexico. Pneumococci were serotyped by the Neufeld test in their countries of origin, and lysates of each strain were coded and mailed to the United States for the multibead assay at ambient temperature without any thermal protection. After breaking the code, 54 discrepancies (11% of samples) were noted, but 46 were due to nonreproducible technical problems or insufficient growth of the pneumococci. All of the isolates grew well for a second test, and therefore, the culture medium used for the multibead assay is adequate. The discrepancies persisted for eight isolates, involving the 6A, 11A, and 18C serotypes. Additional studies of the eight isolates showed that the discrepancies were due to differences in the reagents used in the multibead or Neufeld tests for these three serotypes. For instance, five isolates were typed as 6A with the Neufeld test but as nontypeable by the multibead assay. Selection of another new monoclonal antibody (Hyp6AG1) for the multibead assay resulted in all five discrepant isolates typing as 6A. This finding indicates the validity of the multibead assay and emphasizes the need to validate any new pneumococcal serotyping assay with a large number of clinical isolates from different locations. It also suggests the presence of serological subtypes among isolates expressing the 6A serotype.
我们最近开发了一种名为“多珠检测法”的快速肺炎球菌血清分型方法(J. Yu等人,《临床微生物学杂志》43:156 - 162,2005年),该方法基于对肺炎球菌培养物裂解物中荚膜多糖的多重免疫测定。多珠检测法可以鉴定36种血清型(1、2、3、4、5、6A、6B、7A/7F、8、9L/9N、9V、10A/10B/39/33C、11A/11D/11F、12A/12B/12F、14、15B/5C、17F、18C、19A、19F、20、22A/22F、23F和33A/33F)。超过90%的美国分离株表达这些血清型中的一种(J. B. Robbins等人,《传染病杂志》148:1136 - 1159,1983年)。为了验证这种新检测方法,我们检测了从巴西、丹麦和墨西哥获得的495株肺炎球菌临床分离株。肺炎球菌在其原产国通过纽费尔德试验进行血清分型,每种菌株的裂解物进行编码后在常温下邮寄到美国进行多珠检测,没有任何热保护措施。解码后,发现了54处差异(占样本的11%),但其中46处是由于技术问题不可重复或肺炎球菌生长不足。所有分离株在第二次检测中生长良好,因此,用于多珠检测的培养基是合适的。8株分离株的差异仍然存在,涉及6A、11A和18C血清型。对这8株分离株的进一步研究表明,差异是由于多珠检测或纽费尔德检测中用于这三种血清型的试剂不同所致。例如,5株分离株通过纽费尔德试验被鉴定为6A血清型,但通过多珠检测法无法分型。为多珠检测法选择另一种新的单克隆抗体(Hyp6AG1)后,所有5株有差异的分离株都被鉴定为6A血清型。这一发现表明了多珠检测法的有效性,并强调需要用来自不同地点的大量临床分离株对任何新的肺炎球菌血清分型检测方法进行验证。这也表明在表达6A血清型的分离株中存在血清学亚型。