Suppr超能文献

Modelling the parallel bars in men's artistic gymnastics.

作者信息

Linge Svein, Hallingstad Oddvar, Solberg Flemming

机构信息

Norwegian University of Sport and Physical Education, Sognsveien 220, Postboks 4014, Ullevaal Stadion, 0806 Oslo, Norway.

出版信息

Hum Mov Sci. 2006 Apr;25(2):221-37. doi: 10.1016/j.humov.2005.11.008. Epub 2006 Feb 3.

Abstract

The modelling of the parallel bars-gymnast system is considered. A 2D frontal plane model for the parallel bars apparatus is developed, enabling technique and injury analysis to be undertaken when combined with an interacting gymnast body model. We also demonstrate how such a gymnast body model may be combined with the parallel bars model by use of a simplifying symmetry consideration about the gymnast's sagittal plane. This symmetry consideration implies that just half the gymnast body and one of the two bars, are needed in the total model. We found that midpoint vertical parallel bars dynamics may be modelled by three parameters, using a single damped spring-mass model with linear force-displacement characteristics. Horizontally, as opposed to the vertical direction, bar endpoints accounted for a substantial part (35%) of the midpoint movement, demanding two serially connected springs for this direction. One spring represented the absolute horizontal movement of the bar endpoints, while the other spring represented the superimposed horizontal movement of bar midpoint relative to the endpoints. Both horizontal springs had the same characteristics as the vertical spring, giving a total of nine parameters for the three-spring bar model. Bar parameters were estimated by fitting the modelled bar movements to corresponding measured movements caused by a 140 kg lateral pendulum below the bar midpoint. Validation was then undertaken by comparing model-predicted bar movements to corresponding measurements using lateral pendulums of 100 kg and 60 kg, respectively. Finally, a gymnast handstand position was modelled and used to compare model-predicted and measured bar oscillations following a somersault backwards to a handstand position. The model gave convincing predictions of bar movements both for the 100 kg (1 period, RMS error of 7.0 mm) and 60 kg (1 period, RMS error of 3.7 mm) pendulums, as well as for the somersault landing (2 periods, RMS error of 8.1 mm).

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验