Suppr超能文献

通过确定DNA连环体的拓扑状态监测单链DNA二级结构的形成。

Monitoring single-stranded DNA secondary structure formation by determining the topological state of DNA catenanes.

作者信息

Liang Xingguo, Kuhn Heiko, Frank-Kamenetskii Maxim D

机构信息

Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, Massachusetts 02215, USA.

出版信息

Biophys J. 2006 Apr 15;90(8):2877-89. doi: 10.1529/biophysj.105.074104. Epub 2006 Feb 3.

Abstract

Single-stranded DNA (ssDNA) has essential biological functions during DNA replication, recombination, repair, and transcription. The structure of ssDNA must be better understood to elucidate its functions. However, the available data are too limited to give a clear picture of ssDNA due to the extremely capricious structural features of ssDNA. In this study, by forming DNA catenanes and determining their topology (the linking number, Lk) through the electrophoretic analysis, we demonstrate that the studies of catenanes formed from two ssDNA molecules can yield valuable new information about the ssDNA secondary structure. We construct catenanes out of two short (60/70 nt) ssDNA molecules by enzymatic cyclization of linear oligodeoxynucleotides. The secondary structure formed between the two DNA circles determines the topology (the Lk value) of the constructed DNA catenane. Thus, formation of the secondary structure is experimentally monitored by observing the changes of linking number with sequences and conditions. We found that the secondary structure of ssDNA is much easier to form than expected: the two strands in an internal loop in the folded ssDNA structure prefer to braid around each other rather than stay separately forming a loop, and a duplex containing only mismatched basepairs can form under physiological conditions.

摘要

单链DNA(ssDNA)在DNA复制、重组、修复和转录过程中具有重要的生物学功能。为了阐明其功能,必须更好地了解ssDNA的结构。然而,由于ssDNA极其多变的结构特征,现有的数据过于有限,无法清晰地呈现ssDNA的全貌。在本研究中,通过形成DNA连环体并通过电泳分析确定其拓扑结构(连接数,Lk),我们证明了对由两个ssDNA分子形成的连环体的研究可以产生有关ssDNA二级结构的有价值的新信息。我们通过线性寡脱氧核苷酸的酶促环化,由两个短的(60/70 nt)ssDNA分子构建连环体。两个DNA环之间形成的二级结构决定了构建的DNA连环体拓扑结构(Lk值)。因此,通过观察连接数随序列和条件的变化,实验监测二级结构的形成。我们发现,ssDNA的二级结构比预期更容易形成:折叠的ssDNA结构内部环中的两条链更倾向于相互缠绕,而不是分开形成一个环,并且仅包含错配碱基对的双链体可以在生理条件下形成。

相似文献

1
Monitoring single-stranded DNA secondary structure formation by determining the topological state of DNA catenanes.
Biophys J. 2006 Apr 15;90(8):2877-89. doi: 10.1529/biophysj.105.074104. Epub 2006 Feb 3.
2
Two-Holder Strategy for Efficient and Selective Synthesis of Lk 1 ssDNA Catenane.
Molecules. 2018 Sep 5;23(9):2270. doi: 10.3390/molecules23092270.
3
Analysis of DNA topoisomers, knots, and catenanes by agarose gel electrophoresis.
Methods Mol Biol. 2009;582:11-25. doi: 10.1007/978-1-60761-340-4_2.
4
Efficient Synthesis of Topologically Linked Three-Ring DNA Catenanes.
Chembiochem. 2016 Jun 16;17(12):1127-31. doi: 10.1002/cbic.201600071. Epub 2016 May 23.
5
Engineering interlocking DNA rings with weak physical interactions.
Nat Commun. 2014 Jun 27;5:4279. doi: 10.1038/ncomms5279.
6
Electrophoretic mobility of supercoiled, catenated and knotted DNA molecules.
Nucleic Acids Res. 2015 Feb 27;43(4):e24. doi: 10.1093/nar/gku1255. Epub 2014 Nov 20.
7
Facile Characterization of Topology of DNA Catenanes.
Biophys J. 2020 Apr 7;118(7):1702-1708. doi: 10.1016/j.bpj.2020.02.006. Epub 2020 Feb 15.
8
Topology- and linking number-controlled synthesis of a closed 3 link chain of single-stranded DNA.
Chem Commun (Camb). 2018 Sep 6;54(72):10156-10159. doi: 10.1039/c8cc04965c.
9
Topological DNA Assemblies Containing Identical or Fraternal Twins.
Chembiochem. 2016 Jun 16;17(12):1142-5. doi: 10.1002/cbic.201600036. Epub 2016 Apr 23.
10
Model carbyne vs ideal and DNA catenanes.
J Chem Inf Model. 2005 Jul-Aug;45(4):1030-8. doi: 10.1021/ci050010p.

引用本文的文献

4
DNA Volume, Topology, and Flexibility Dictate Nanopore Current Signals.
Nano Lett. 2023 Aug 9;23(15):7054-7061. doi: 10.1021/acs.nanolett.3c01823. Epub 2023 Jul 24.
5
Molecular DNA dendron vaccines.
Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2215091120. doi: 10.1073/pnas.2215091120. Epub 2023 Jan 25.
6
Cyclization of secondarily structured oligonucleotides to single-stranded rings by using DNA ligase at high temperatures.
RSC Adv. 2018 May 23;8(34):18972-18979. doi: 10.1039/c8ra02804d. eCollection 2018 May 22.
7
Conformational Dynamics of Poly(T) Single-Stranded DNA at the Single-Molecule Level.
J Phys Chem Lett. 2021 May 20;12(19):4576-4584. doi: 10.1021/acs.jpclett.1c00962. Epub 2021 May 10.
8
Facile Characterization of Topology of DNA Catenanes.
Biophys J. 2020 Apr 7;118(7):1702-1708. doi: 10.1016/j.bpj.2020.02.006. Epub 2020 Feb 15.
9
Molecular Dynamics Study of the Hybridization between RNA and Modified Oligonucleotides.
J Chem Theory Comput. 2019 Nov 12;15(11):6422-6432. doi: 10.1021/acs.jctc.9b00519. Epub 2019 Oct 9.
10
Two-Holder Strategy for Efficient and Selective Synthesis of Lk 1 ssDNA Catenane.
Molecules. 2018 Sep 5;23(9):2270. doi: 10.3390/molecules23092270.

本文引用的文献

1
RNA structure: the long and the short of it.
Curr Opin Struct Biol. 2005 Jun;15(3):302-8. doi: 10.1016/j.sbi.2005.04.005.
2
Solution structure of an RNA internal loop with three consecutive sheared GA pairs.
Biochemistry. 2005 Mar 1;44(8):2845-56. doi: 10.1021/bi048079y.
3
Effects of stacking on the configurations and elasticity of single-stranded nucleic acids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Aug;70(2 Pt 1):020902. doi: 10.1103/PhysRevE.70.020902. Epub 2004 Aug 24.
4
Candidates for novel RNA topologies.
J Mol Biol. 2004 Aug 27;341(5):1129-44. doi: 10.1016/j.jmb.2004.06.054.
5
Protein-DNA footprinting by endcapped duplex oligodeoxyribonucleotides.
Nucleic Acids Res. 2004 Jul 19;32(13):e107. doi: 10.1093/nar/gnh103.
6
The thermodynamics of DNA structural motifs.
Annu Rev Biophys Biomol Struct. 2004;33:415-40. doi: 10.1146/annurev.biophys.32.110601.141800.
7
Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy.
Biophys J. 2004 Apr;86(4):2530-7. doi: 10.1016/S0006-3495(04)74308-8.
8
Ligating DNA with DNA.
J Am Chem Soc. 2004 Mar 24;126(11):3454-60. doi: 10.1021/ja039713i.
9
Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Res. 2003 Jul 1;31(13):3406-15. doi: 10.1093/nar/gkg595.
10
Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes.
Science. 2003 Jun 6;300(5625):1542-8. doi: 10.1126/science.1083430.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验