Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom.
School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.
Nano Lett. 2023 Aug 9;23(15):7054-7061. doi: 10.1021/acs.nanolett.3c01823. Epub 2023 Jul 24.
Nanopores have developed into powerful single-molecule sensors capable of identifying and characterizing small polymers, such as DNA, by electrophoretically driving them through a nanoscale pore and monitoring temporary blockades in the ionic pore current. However, the relationship between nanopore signals and the physical properties of DNA remains only partly understood. Herein, we introduce a programmable DNA carrier platform to capture carefully designed DNA nanostructures. Controlled translocation experiments through our glass nanopores allowed us to disentangle this relationship. We vary DNA topology by changing the length, strand duplications, sequence, unpaired nucleotides, and rigidity of the analyte DNA and find that the ionic current drop is mainly determined by the volume and flexibility of the DNA nanostructure in the nanopore. Finally, we use our understanding of the role of DNA topology to discriminate circular single-stranded DNA molecules from linear ones with the same number of nucleotides using the nanopore signal.
纳米孔已发展成为强大的单分子传感器,能够通过电泳将小分子聚合物(如 DNA)驱动穿过纳米级孔,并监测离子电流在纳米孔中的暂时阻断,从而识别和表征这些小分子聚合物。然而,纳米孔信号与 DNA 的物理性质之间的关系仍不完全清楚。在此,我们引入了一种可编程的 DNA 载体平台来捕获精心设计的 DNA 纳米结构。通过我们的玻璃纳米孔进行的受控易位实验使我们能够理清这种关系。我们通过改变分析物 DNA 的长度、链重复、序列、未配对核苷酸和刚性来改变 DNA 的拓扑结构,发现离子电流下降主要取决于 DNA 纳米结构在纳米孔中的体积和灵活性。最后,我们利用我们对 DNA 拓扑结构作用的理解,使用纳米孔信号从具有相同核苷酸数的线性单链 DNA 分子中区分出环形单链 DNA 分子。