Suppr超能文献

光系统II的蛋白质动力学研究:蛋白质构象对反应中心功能的影响。

A protein dynamics study of photosystem II: the effects of protein conformation on reaction center function.

作者信息

Vasil'ev Sergej, Bruce Doug

机构信息

Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada.

出版信息

Biophys J. 2006 May 1;90(9):3062-73. doi: 10.1529/biophysj.105.076075. Epub 2006 Feb 3.

Abstract

Molecular dynamics simulations have been performed to study photosystem II structure and function. Structural information obtained from simulations was combined with ab initio computations of chromophore excited states. In contrast to calculations based on the x-ray structure, the molecular-dynamics-based calculations accurately predicted the experimental absorbance spectrum. In addition, our calculations correctly assigned the energy levels of reaction-center (RC) chromophores, as well as the lowest-energy antenna chlorophyll. The primary and secondary quinone electron acceptors, Q(A) and Q(B), exhibited independent changes in position over the duration of the simulation. Q(B) fluctuated between two binding sites similar to the proximal and distal sites previously observed in light- and dark-adapted RC from purple bacteria. Kinetic models were used to characterize the relative influence of chromophore geometry, site energies, and electron transport rates on RC efficiency. The fluctuating energy levels of antenna chromophores had a larger impact on quantum yield than did their relative positions. Variations in electron transport rates had the most significant effect and were sufficient to explain the experimentally observed multi-component decay of excitation in photosystem II. The implications of our results are discussed in the context of competing evolutionary selection pressures for RC structure and function.

摘要

已进行分子动力学模拟以研究光系统II的结构和功能。从模拟中获得的结构信息与发色团激发态的从头计算相结合。与基于X射线结构的计算不同,基于分子动力学的计算准确地预测了实验吸收光谱。此外,我们的计算正确地确定了反应中心(RC)发色团以及能量最低的天线叶绿素的能级。在模拟过程中,初级和次级醌电子受体Q(A)和Q(B)的位置呈现出独立变化。Q(B)在两个结合位点之间波动,类似于先前在紫色细菌的光适应和暗适应RC中观察到的近端和远端位点。动力学模型用于表征发色团几何结构、位点能量和电子传输速率对RC效率的相对影响。天线发色团波动的能级对量子产率的影响比对其相对位置的影响更大。电子传输速率的变化影响最为显著,足以解释实验观察到的光系统II中激发的多组分衰减。我们将在RC结构和功能的竞争性进化选择压力背景下讨论我们结果的意义。

相似文献

1
A protein dynamics study of photosystem II: the effects of protein conformation on reaction center function.
Biophys J. 2006 May 1;90(9):3062-73. doi: 10.1529/biophysj.105.076075. Epub 2006 Feb 3.
2
A theoretical model for electron and proton coupling at quinone-binding site of photosystem II of higher plants.
Bioelectrochemistry. 2004 Jun;63(1-2):95-8. doi: 10.1016/j.bioelechem.2003.09.032.
5
Modulating the redox potential of the stable electron acceptor, Q(B), in mutagenized photosystem II reaction centers.
Biochemistry. 2011 Mar 8;50(9):1454-64. doi: 10.1021/bi1017649. Epub 2011 Feb 10.
8
Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy.
Biophys J. 2007 Oct 15;93(8):2732-42. doi: 10.1529/biophysj.107.105452. Epub 2007 Jun 15.
9
Hierarchical coarse-graining model for photosystem II including electron and excitation-energy transfer processes.
Biosystems. 2014 Mar;117:15-29. doi: 10.1016/j.biosystems.2013.12.008. Epub 2014 Jan 10.
10
Preferential pathways for light-trapping involving beta-ligated chlorophylls.
Biochim Biophys Acta. 2009 Oct;1787(10):1254-65. doi: 10.1016/j.bbabio.2009.05.010. Epub 2009 May 27.

引用本文的文献

1
Dynamic energy conversion in protein catalysis: From brownian motion to enzymatic function.
Comput Struct Biotechnol J. 2025 Jul 30;27:3337-3369. doi: 10.1016/j.csbj.2025.07.050. eCollection 2025.
2
Simulations of Excitonic Couplings in Spinach Light-Harvesting Complex II Using a More Realistic Model in the Presence of Photosystem II Core.
ACS Omega. 2025 Jun 9;10(24):25322-25335. doi: 10.1021/acsomega.4c11543. eCollection 2025 Jun 24.
4
Protein Matrix Control of Reaction Center Excitation in Photosystem II.
J Am Chem Soc. 2020 Oct 21;142(42):18174-18190. doi: 10.1021/jacs.0c08526. Epub 2020 Oct 9.
5
A TDDFT investigation of the Photosystem II reaction center: Insights into the precursors to charge separation.
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19705-19712. doi: 10.1073/pnas.1922158117. Epub 2020 Aug 3.
6
Acquirement of water-splitting ability and alteration of the charge-separation mechanism in photosynthetic reaction centers.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16373-16382. doi: 10.1073/pnas.2000895117. Epub 2020 Jun 29.
7
Molecular dynamics simulations in photosynthesis.
Photosynth Res. 2020 May;144(2):273-295. doi: 10.1007/s11120-020-00741-y. Epub 2020 Apr 15.
8
Triplet-triplet energy transfer in artificial and natural photosynthetic antennas.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5513-E5521. doi: 10.1073/pnas.1614857114. Epub 2017 Jun 26.
10
Calculation of chromophore excited state energy shifts in response to molecular dynamics of pigment-protein complexes.
Photosynth Res. 2011 Oct;110(1):25-38. doi: 10.1007/s11120-011-9689-2. Epub 2011 Oct 1.

本文引用的文献

3
Kinetic and Energetic Model for the Primary Processes in Photosystem II.
Biophys J. 1988 Sep;54(3):397-405. doi: 10.1016/S0006-3495(88)82973-4.
4
Solvated ensemble averaging in the calculation of partial atomic charges.
J Comput Chem. 2001 Aug;22(11):1125-37. doi: 10.1002/jcc.1072.
5
Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density.
Proc Natl Acad Sci U S A. 1987 Dec;84(23):8414-8. doi: 10.1073/pnas.84.23.8414.
7
Redox potentials of chlorophylls in the photosystem II reaction center.
Biochemistry. 2005 Mar 15;44(10):4118-24. doi: 10.1021/bi047922p.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验