Cassano Adam G, Wang Benlian, Anderson David R, Previs Stephen, Harris Michael E, Anderson Vernon E
Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
Anal Biochem. 2007 Aug 1;367(1):28-39. doi: 10.1016/j.ab.2007.03.037. Epub 2007 Apr 2.
Precise and accurate measurements of isotopologue distributions (IDs) in biological molecules are needed for determination of isotope effects, quantitation by isotope dilution, and quantification of isotope tracers employed in both metabolic and biophysical studies. While single ion monitoring (SIM) yields significantly greater sensitivity and signal/noise than profile-mode acquisitions, we show that small changes in the SIM window width and/or center can alter experimentally determined isotope ratios by up to 5%, resulting in significant inaccuracies. This inaccuracy is attributed to mass granularity, the differential distribution of digital data points across the m/z ranges sampled by SIM. Acquiring data in the profile mode and fitting the data to an equation describing a series of equally spaced and identically shaped peaks eliminates the inaccuracies associated with mass granularity with minimal loss of precision. Additionally a method of using the complete ID profile data that inherently corrects for "spillover" and for the natural-abundance ID has been used to determine 18O/16O ratios for 5',3'-guanosine bis-[18O1]phosphate and TM[18O1]P with precisions of approximately 0.005. The analysis protocol is also applied to quadrupole time-of-flight tandem mass spectrometry using [2-(18)O] arabinouridine and 3'-UM[18O1]P which enhances signal/noise and minimizes concerns for background contamination.
在代谢和生物物理研究中,为了确定同位素效应、通过同位素稀释进行定量以及对所使用的同位素示踪剂进行定量,需要对生物分子中的同位素异构体分布(ID)进行精确测量。虽然单离子监测(SIM)比轮廓模式采集具有显著更高的灵敏度和信号/噪声,但我们表明,SIM窗口宽度和/或中心的微小变化可使实验测定的同位素比率改变高达5%,从而导致显著的误差。这种误差归因于质量粒度,即数字数据点在SIM采样的m/z范围内的差异分布。以轮廓模式采集数据并将数据拟合到描述一系列等间距且形状相同的峰的方程中,可消除与质量粒度相关的误差,同时精度损失最小。此外,一种使用完整ID轮廓数据的方法已被用于确定5',3'-鸟苷双-[18O1]磷酸酯和TM[18O1]P的18O/16O比率,该方法固有地校正了“溢出”和天然丰度ID,精度约为0.005。该分析方案还应用于使用[2-(18)O]阿拉伯糖核苷和3'-UM[18O1]P的四极杆飞行时间串联质谱,可增强信号/噪声并最大限度地减少对背景污染的担忧。