Sancho J
Dep. Bioquímica y Biología Molecular y Celular, Fac. Ciencias and Biocomputation and Complex Systems Physics Institute (BIFI), Universidad de Zaragoza, Spain.
Cell Mol Life Sci. 2006 Apr;63(7-8):855-64. doi: 10.1007/s00018-005-5514-4.
Flavodoxins are electron-transfer proteins involved in a variety of photosynthetic and non-photosynthetic reactions in bacteria, whereas, in eukaryotes, a descendant of the flavodoxin gene helps build multidomain proteins. The redox activity of flavodoxin derives from its bound flavin mononucleotide cofactor (FMN), whose intrinsic properties are profoundly modified by the host apoprotein. This review covers the very exciting last decade of flavodoxin research, in which the folding pathway, the structure and stability of the apoprotein, the mechanism of FMN recognition, the interactions that stabilize the functional complex and tailor the redox potentials, and many details of the binding and electron transfer to partner proteins have been revealed. The next decade should witness an even deeper understanding of the flavodoxin molecule and a greater comprehension of its many physiological roles. The fact that flavodoxin is essential for the survival of some human pathogens could make it a drug target on its own.
黄素氧还蛋白是参与细菌中各种光合作用和非光合作用反应的电子传递蛋白,而在真核生物中,黄素氧还蛋白基因的一个后代有助于构建多结构域蛋白。黄素氧还蛋白的氧化还原活性源于其结合的黄素单核苷酸辅因子(FMN),其固有特性会被宿主脱辅基蛋白深刻改变。本综述涵盖了黄素氧还蛋白研究非常令人兴奋的过去十年,其中揭示了脱辅基蛋白的折叠途径、结构和稳定性、FMN识别机制、稳定功能复合物并调整氧化还原电位的相互作用,以及与伴侣蛋白结合和电子转移的许多细节。未来十年有望对黄素氧还蛋白分子有更深入的了解,并对其众多生理作用有更全面的认识。黄素氧还蛋白对某些人类病原体的生存至关重要,这一事实可能使其本身成为一个药物靶点。