Suppr超能文献

处于松弛状态和Ca2+激活状态下细肌丝的原子模型。

An atomic model of the thin filament in the relaxed and Ca2+-activated states.

作者信息

Pirani Alnoor, Vinogradova Maia V, Curmi Paul M G, King William A, Fletterick Robert J, Craig Roger, Tobacman Larry S, Xu Chen, Hatch Victoria, Lehman William

机构信息

Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.

出版信息

J Mol Biol. 2006 Mar 31;357(3):707-17. doi: 10.1016/j.jmb.2005.12.050. Epub 2006 Jan 13.

Abstract

Contraction of striated muscles is regulated by tropomyosin strands that run continuously along actin-containing thin filaments. Tropomyosin blocks myosin-binding sites on actin in resting muscle and unblocks them during Ca2+-activation. This steric effect controls myosin-crossbridge cycling on actin that drives contraction. Troponin, bound to the thin filaments, couples Ca2+-concentration changes to the movement of tropomyosin. Ca2+-free troponin is thought to trap tropomyosin in the myosin-blocking position, while this constraint is released after Ca2+-binding. Although the location and movements of tropomyosin are well known, the structural organization of troponin on thin filaments is not. Its mechanism of action therefore remains uncertain. To determine the organization of troponin on the thin filament, we have constructed atomic models of low and high-Ca2+ states based on crystal structures of actin, tropomyosin and the "core domain" of troponin, and constrained by distances between filament components and by their location in electron microscopy (EM) reconstructions. Alternative models were also built where troponin was systematically repositioned or reoriented on actin. The accuracy of the different models was evaluated by determining how well they corresponded to EM images. While the initial low and high-Ca2+ models fitted the data precisely, the alternatives did not, suggesting that the starting models best represented the correct structures. Thin filament reconstructions were generated from the EM data using these starting models as references. In addition to showing the core domain of troponin, the reconstructions showed additional detail not present in the starting models. We attribute this to an extension of TnI linking the troponin core domain to actin at low (but not at high) Ca2+, thereby trapping tropomyosin in the OFF-state. The bulk of the core domain of troponin appears not to move significantly on actin, regardless of Ca2+ level. Our observations suggest a simple model for muscle regulation in which troponin affects the charge balance on actin and hence tropomyosin position.

摘要

横纹肌的收缩受原肌球蛋白丝调节,这些丝沿着含肌动蛋白的细肌丝连续排列。在静息肌肉中,原肌球蛋白会阻断肌动蛋白上的肌球蛋白结合位点,而在钙离子激活时则会解除这种阻断。这种空间效应控制着肌球蛋白在肌动蛋白上的横桥循环,从而驱动肌肉收缩。肌钙蛋白与细肌丝结合,将钙离子浓度的变化与原肌球蛋白的运动联系起来。人们认为,无钙离子的肌钙蛋白会将原肌球蛋白锁定在阻断肌球蛋白的位置,而在结合钙离子后,这种限制就会被解除。尽管原肌球蛋白的位置和运动情况已为人熟知,但细肌丝上肌钙蛋白的结构组织却并不清楚。因此,其作用机制仍不明确。为了确定细肌丝上肌钙蛋白的组织情况,我们基于肌动蛋白、原肌球蛋白和肌钙蛋白“核心结构域”的晶体结构,构建了低钙离子和高钙离子状态的原子模型,并通过细丝成分之间的距离及其在电子显微镜(EM)重建中的位置进行约束。我们还构建了替代模型,在这些模型中,肌钙蛋白在肌动蛋白上被系统地重新定位或重新定向。通过确定不同模型与EM图像的对应程度来评估其准确性。虽然最初的低钙离子和高钙离子模型与数据精确匹配,但替代模型却并非如此,这表明起始模型最能代表正确的结构。以这些起始模型为参考,利用EM数据生成了细肌丝重建图。除了显示肌钙蛋白的核心结构域外,重建图还显示了起始模型中不存在的其他细节。我们将此归因于肌钙蛋白抑制亚基(TnI)的延伸,它在低钙离子(而非高钙离子)状态下将肌钙蛋白核心结构域与肌动蛋白相连,从而将原肌球蛋白锁定在关闭状态。无论钙离子水平如何,肌钙蛋白核心结构域的大部分似乎在肌动蛋白上不会发生显著移动。我们的观察结果提出了一个简单的肌肉调节模型,即肌钙蛋白会影响肌动蛋白上的电荷平衡,进而影响原肌球蛋白的位置。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验