Avramoglu Rita Kohen, Basciano Heather, Adeli Khosrow
Clinical Biochemistry Division, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada M5G 1X8.
Clin Chim Acta. 2006 Jun;368(1-2):1-19. doi: 10.1016/j.cca.2005.12.026. Epub 2006 Feb 9.
Insulin resistant states are commonly associated with an atherogenic dyslipidemia that contributes to significantly higher risk of atherosclerosis and cardiovascular disease. Indeed, disorders of carbohydrate and lipid metabolism co-exist in the majority of subjects with the "metabolic syndrome" and form the basis for the definition and diagnosis of this complex syndrome. The most fundamental defect in these patients is resistance to cellular actions of insulin, particularly resistance to insulin-stimulated glucose uptake. Insulin insensitivity appears to cause hyperinsulinemia, enhanced hepatic gluconeogenesis and glucose output, reduced suppression of lipolysis in adipose tissue leading to a high free fatty acid flux, and increased hepatic very low density lipoprotein (VLDL) secretion causing hypertriglyceridemia and reduced plasma levels of high density lipoprotein (HDL) cholesterol. Although the link between insulin resistance and dysregulation of lipoprotein metabolism is well established, a significant gap of knowledge exists regarding the underlying cellular and molecular mechanisms. Emerging evidence suggests that insulin resistance and its associated metabolic dyslipidemia result from perturbations in key molecules of the insulin signaling pathway, including overexpression of key phosphatases, downregulation and/or activation of key protein kinase cascades, leading to a state of mixed hepatic insulin resistance and sensitivity. These signaling changes in turn cause an increased expression of sterol regulatory element binding protein (SREBP) 1c, induction of de novo lipogensis and higher activity of microsomal triglyceride transfer protein (MTP), which together with high exogenous free fatty acid (FFA) flux collectively stimulate the hepatic production of apolipoprotein B (apoB)-containing VLDL particles. VLDL overproduction underlies the high triglyceride/low HDL-cholesterol lipid profile commonly observed in insulin resistant subjects.
胰岛素抵抗状态通常与致动脉粥样硬化性血脂异常相关,这会显著增加动脉粥样硬化和心血管疾病的风险。事实上,碳水化合物和脂质代谢紊乱在大多数患有“代谢综合征”的受试者中并存,构成了这一复杂综合征定义和诊断的基础。这些患者最根本的缺陷是对胰岛素的细胞作用产生抵抗,尤其是对胰岛素刺激的葡萄糖摄取产生抵抗。胰岛素不敏感似乎会导致高胰岛素血症、肝糖异生和葡萄糖输出增强、脂肪组织中脂解抑制作用减弱导致游离脂肪酸通量升高,以及肝脏极低密度脂蛋白(VLDL)分泌增加,从而引起高甘油三酯血症和血浆高密度脂蛋白(HDL)胆固醇水平降低。尽管胰岛素抵抗与脂蛋白代谢失调之间的联系已得到充分证实,但关于潜在的细胞和分子机制仍存在重大知识空白。新出现的证据表明,胰岛素抵抗及其相关的代谢性血脂异常是由胰岛素信号通路关键分子的扰动引起的,包括关键磷酸酶的过度表达、关键蛋白激酶级联反应的下调和/或激活,导致肝脏出现胰岛素抵抗和敏感的混合状态。这些信号变化进而导致固醇调节元件结合蛋白(SREBP)1c表达增加、从头脂肪生成诱导以及微粒体甘油三酯转移蛋白(MTP)活性升高,这些与高外源性游离脂肪酸(FFA)通量共同刺激肝脏产生含载脂蛋白B(apoB)的VLDL颗粒。VLDL过度产生是胰岛素抵抗受试者常见的高甘油三酯/低HDL胆固醇血脂谱的基础。