Huang Ci, Liao Yilie, Peng Wei, Xiang Hai, Wang Hui, Ma Jieqiong, Chai Zhixin, Wu Zhijuan, Yue Binglin, Cai Xin, Zhong Jincheng, Wang Jikun
Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China.
Zhongshan Institute for Drug Discovery (ZIDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
Animals (Basel). 2025 Jul 15;15(14):2084. doi: 10.3390/ani15142084.
The yak () has exceptional hypoxia resilience, making it an ideal model for studying high-altitude adaptation. Here, we investigated the effects of oxygen concentration on yak cardiac fibroblast proliferation and the underlying molecular regulatory pathways using RNA sequencing (RNA-seq) and metabolic analyses. Decreased oxygen levels significantly inhibited cardiac fibroblast proliferation and activity. Intriguingly, while the mitochondrial DNA (mtDNA) content remained stable, we observed coordinated upregulation of mtDNA-encoded oxidative phosphorylation components. Live-cell metabolic assessment further demonstrated that hypoxia led to mitochondrial respiratory inhibition and enhanced glycolysis. RNA-seq analysis identified key hypoxia adaptation genes, including glycolysis regulators (e.g., , ), and hypoxia-inducible factor 1-alpha (), with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighting their involvement in metabolic regulation. The protein-protein interaction network identified three consensus hub genes across five topological algorithms (, , and ) that may be involved in hypoxia adaptation. These findings highlight the importance of metabolic reprogramming underlying yak adaptation to hypoxia, providing valuable molecular insights into the mechanisms underlying high-altitude survival.
牦牛()具有卓越的低氧适应能力,使其成为研究高原适应的理想模型。在此,我们使用RNA测序(RNA-seq)和代谢分析,研究了氧浓度对牦牛心脏成纤维细胞增殖及潜在分子调控途径的影响。氧水平降低显著抑制了心脏成纤维细胞的增殖和活性。有趣的是,虽然线粒体DNA(mtDNA)含量保持稳定,但我们观察到mtDNA编码的氧化磷酸化成分协同上调。活细胞代谢评估进一步表明,低氧导致线粒体呼吸抑制并增强糖酵解。RNA-seq分析确定了关键的低氧适应基因,包括糖酵解调节因子(如,)和低氧诱导因子1α(),基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析突出了它们在代谢调节中的作用。蛋白质-蛋白质相互作用网络通过五种拓扑算法(,,和)确定了三个共有枢纽基因,它们可能参与低氧适应。这些发现突出了代谢重编程在牦牛适应低氧过程中的重要性,为高原生存机制提供了有价值的分子见解。