Suppr超能文献

受生物启发的神经网络模型在学习和模式记忆方面的有效性。

Effectiveness of Biologically Inspired Neural Network Models in Learning and Patterns Memorization.

作者信息

Squadrani Lorenzo, Curti Nico, Giampieri Enrico, Remondini Daniel, Blais Brian, Castellani Gastone

机构信息

Department of Physics and Astronomy, University of Bologna, 40126 Bologna, Italy.

Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy.

出版信息

Entropy (Basel). 2022 May 12;24(5):682. doi: 10.3390/e24050682.

Abstract

In this work, we propose an implementation of the Bienenstock-Cooper-Munro (BCM) model, obtained by a combination of the classical framework and modern deep learning methodologies. The BCM model remains one of the most promising approaches to modeling the synaptic plasticity of neurons, but its application has remained mainly confined to neuroscience simulations and few applications in data science. To improve the convergence efficiency of the BCM model, we combine the original plasticity rule with the optimization tools of modern deep learning. By numerical simulation on standard benchmark datasets, we prove the efficiency of the BCM model in learning, memorization capacity, and feature extraction. In all the numerical simulations, the visualization of neuronal synaptic weights confirms the memorization of human-interpretable subsets of patterns. We numerically prove that the selectivity obtained by BCM neurons is indicative of an internal feature extraction procedure, useful for patterns clustering and classification. The introduction of competitiveness between neurons in the same BCM network allows the network to modulate the memorization capacity of the model and the consequent model selectivity. The proposed improvements make the BCM model a suitable alternative to standard machine learning techniques for both feature selection and classification tasks.

摘要

在这项工作中,我们提出了一种Bienenstock-Cooper-Munro(BCM)模型的实现方法,该方法是通过将经典框架与现代深度学习方法相结合而获得的。BCM模型仍然是模拟神经元突触可塑性最有前景的方法之一,但其应用主要局限于神经科学模拟,在数据科学中的应用很少。为了提高BCM模型的收敛效率,我们将原始的可塑性规则与现代深度学习的优化工具相结合。通过对标准基准数据集进行数值模拟,我们证明了BCM模型在学习、记忆能力和特征提取方面的效率。在所有数值模拟中,神经元突触权重的可视化证实了对人类可解释模式子集的记忆。我们通过数值证明,BCM神经元获得的选择性表明了一种内部特征提取过程,这对于模式聚类和分类很有用。在同一BCM网络中引入神经元之间的竞争,使网络能够调节模型的记忆能力以及随之而来的模型选择性。所提出的改进使BCM模型成为用于特征选择和分类任务的标准机器学习技术的合适替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d1e/9141587/08d6c1c02b89/entropy-24-00682-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验