McDougall Steven R, Anderson Alexander R A, Chaplain Mark A J
Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK.
J Theor Biol. 2006 Aug 7;241(3):564-89. doi: 10.1016/j.jtbi.2005.12.022. Epub 2006 Feb 17.
Angiogenesis, the growth of a network of blood vessels, is a crucial component of solid tumour growth, linking the relatively harmless avascular growth phase and the potentially fatal vascular growth phase. As a process, angiogenesis is a well-orchestrated sequence of events involving endothelial cell migration, proliferation; degradation of tissue; new capillary vessel (sprout) formation; loop formation (anastomosis) and, crucially, blood flow through the network. Once there is blood flow associated with the nascent network, the subsequent growth of the network evolves both temporally and spatially in response to the combined effects of angiogenic factors, migratory cues via the extracellular matrix and perfusion-related haemodynamic forces in a manner that may be described as both adaptive and dynamic. In this paper we present a mathematical model which simultaneously couples vessel growth with blood flow through the vessels--dynamic adaptive tumour-induced angiogenesis (DATIA). This new mathematical model presents a theoretical and computational investigation of the process and highlights a number of important new targets for therapeutic intervention. In contrast to earlier flow models, where the effects of perfusion (blood flow) were essentially evaluated a posteriori, i.e. after generating a hollow network, blood flow in the model described in this paper has a direct impact during capillary growth, with radial adaptations and network remodelling occurring as immediate consequences of primary anastomoses. Capillary network architectures resulting from the dynamically adaptive model are found to differ radically from those obtained using earlier models. The DATIA model is used to examine the effects of changing various physical and biological model parameters on the developing vascular architecture and the delivery of chemotherapeutic drugs to the tumour. Subsequent simulations of chemotherapeutic treatments under different parameter regimes lead to the identification of a number of new therapeutic targets for tumour management.
血管生成,即血管网络的生长,是实体肿瘤生长的关键组成部分,它连接了相对无害的无血管生长阶段和潜在致命的血管生长阶段。作为一个过程,血管生成是一系列精心编排的事件,包括内皮细胞迁移、增殖;组织降解;新毛细血管(芽)形成;环形成(吻合),以及至关重要的通过网络的血流。一旦有与新生网络相关的血流,网络的后续生长会在血管生成因子、通过细胞外基质的迁移线索以及灌注相关血流动力学力的综合作用下,在时间和空间上演变,其方式可被描述为适应性和动态性的。在本文中,我们提出了一个数学模型,该模型同时将血管生长与通过血管的血流耦合起来——动态适应性肿瘤诱导血管生成(DATIA)。这个新的数学模型对该过程进行了理论和计算研究,并突出了一些重要的新治疗干预靶点。与早期的血流模型不同,在早期模型中灌注(血流)的影响基本上是在事后评估的,即在生成一个空心网络之后,本文所述模型中的血流在毛细血管生长过程中有直接影响,径向适应和网络重塑是初级吻合的直接后果。发现动态适应性模型产生的毛细血管网络结构与使用早期模型获得的结构有根本不同。DATIA模型用于研究改变各种物理和生物学模型参数对发育中的血管结构以及化疗药物向肿瘤递送的影响。随后在不同参数条件下对化疗治疗的模拟导致确定了一些肿瘤管理的新治疗靶点。