Jin Fulai, Hazbun Tony, Michaud Gregory A, Salcius Michael, Predki Paul F, Fields Stanley, Huang Jing
Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA.
Nat Methods. 2006 Mar;3(3):183-9. doi: 10.1038/nmeth859.
The generation of large-scale data sets is a fundamental requirement of systems biology. But despite recent advances, generation of such high-coverage data remains a major challenge. We developed a pooling-deconvolution strategy that can dramatically decrease the effort required. This strategy, pooling with imaginary tags followed by deconvolution (PI-deconvolution), allows the screening of 2(n) probe proteins (baits) in 2 x n pools, with n replicates for each bait. Deconvolution of baits with their binding partners (preys) can be achieved by reading the prey's profile from the 2 x n experiments. We validated this strategy for protein-protein interaction mapping using both proteome microarrays and a yeast two-hybrid array, demonstrating that PI-deconvolution can be used to identify interactions accurately with fewer experiments and better coverage. We also show that PI-deconvolution can be used to identify protein-small molecule interactions inferred from profiling the yeast deletion collection. PI-deconvolution should be applicable to a wide range of library-against-library approaches and can also be used to optimize array designs.
大规模数据集的生成是系统生物学的一项基本要求。尽管最近取得了进展,但生成此类高覆盖率的数据仍然是一项重大挑战。我们开发了一种合并-反卷积策略,该策略可以显著减少所需的工作量。这种策略,即使用虚拟标签进行合并然后进行反卷积(PI-反卷积),允许在2×n个池中筛选2(n)种探针蛋白(诱饵),每个诱饵进行n次重复。通过从2×n次实验中读取猎物的图谱,可以实现诱饵与其结合伙伴(猎物)的反卷积。我们使用蛋白质组芯片和酵母双杂交芯片验证了这种用于蛋白质-蛋白质相互作用图谱绘制的策略,证明PI-反卷积可用于通过更少的实验和更好的覆盖率准确识别相互作用。我们还表明,PI-反卷积可用于从酵母缺失文库的分析中识别蛋白质-小分子相互作用。PI-反卷积应适用于广泛类型的文库对文库方法,也可用于优化芯片设计。