Graciet Emmanuelle, Hu Rong-Gui, Piatkov Konstantin, Rhee Joon Haeng, Schwarz Erich M, Varshavsky Alexander
Division of Biology, California Institute of Technology, Pasadena, 91125, USA.
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3078-83. doi: 10.1073/pnas.0511224103. Epub 2006 Feb 21.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Primary destabilizing N-terminal residues (Nd(p)) are recognized directly by the targeting machinery. The recognition of secondary destabilizing N-terminal residues (Nd(s)) is preceded by conjugation of an Nd(p) residue to Nd(s) of a polypeptide substrate. In eukaryotes, ATE1-encoded arginyl-transferases (R(D,E,C*)-transferases) conjugate Arg (R), an Nd(p) residue, to Nd(s) residues Asp (D), Glu (E), or oxidized Cys residue (C*). Ubiquitin ligases recognize the N-terminal Arg of a substrate and target the (ubiquitylated) substrate to the proteasome. In prokaryotes such as Escherichia coli, Nd(p) residues Leu (L) or Phe (F) are conjugated, by the aat-encoded Leu/Phe-transferase (L/F(K,R)-transferase), to N-terminal Arg or Lys, which are Nd(s) in prokaryotes but Nd(p) in eukaryotes. In prokaryotes, substrates bearing the Nd(p) residues Leu, Phe, Trp, or Tyr are degraded by the proteasome-like ClpAP protease. Despite enzymological similarities between eukaryotic R(D,E,C*)-transferases and prokaryotic L/F(K,R)-transferases, there is no significant sequelogy (sequence similarity) between them. We identified an aminoacyl-transferase, termed Bpt, in the human pathogen Vibrio vulnificus. Although it is a sequelog of eukaryotic R(D,E,C*)-transferases, this prokaryotic transferase exhibits a "hybrid" specificity, conjugating Nd(p) Leu to Nd(s) Asp or Glu. Another aminoacyl-transferase, termed ATEL1, of the eukaryotic pathogen Plasmodium falciparum, is a sequelog of prokaryotic L/F(K,R)-transferases (Aat), but has the specificity of eukaryotic R(D,E,C*)-transferases (ATE1). Phylogenetic analysis suggests that the substrate specificity of R-transferases arose by two distinct routes during the evolution of eukaryotes.
N端规则将蛋白质在体内的半衰期与其N端残基的性质联系起来。主要的不稳定N端残基(Nd(p))可被靶向机制直接识别。二级不稳定N端残基(Nd(s))的识别,是在一个Nd(p)残基与多肽底物的Nd(s)残基结合之后发生的。在真核生物中,由ATE1编码的精氨酰转移酶(R(D,E,C*)-转移酶)将Nd(p)残基精氨酸(R)与Nd(s)残基天冬氨酸(D)、谷氨酸(E)或氧化型半胱氨酸残基(C*)结合。泛素连接酶识别底物的N端精氨酸,并将(泛素化的)底物靶向蛋白酶体。在原核生物如大肠杆菌中,由aat编码的亮氨酸/苯丙氨酸转移酶(L/F(K,R)-转移酶)将Nd(p)残基亮氨酸(L)或苯丙氨酸(F)与N端精氨酸或赖氨酸结合,这些残基在原核生物中是Nd(s),但在真核生物中是Nd(p)。在原核生物中,带有Nd(p)残基亮氨酸、苯丙氨酸、色氨酸或酪氨酸的底物会被蛋白酶体样的ClpAP蛋白酶降解。尽管真核生物的R(D,E,C*)-转移酶与原核生物的L/F(K,R)-转移酶在酶学上有相似性,但它们之间没有显著的序列相似性。我们在人类病原体创伤弧菌中鉴定出一种氨基酰转移酶,称为Bpt。尽管它是真核生物R(D,E,C*)-转移酶的序列同源物,但这种原核生物转移酶表现出“混合”特异性,将Nd(p)亮氨酸与Nd(s)天冬氨酸或谷氨酸结合。真核生物病原体恶性疟原虫的另一种氨基酰转移酶,称为ATEL1,是原核生物L/F(K,R)-转移酶(Aat)的序列同源物,但具有真核生物R(D,E,C*)-转移酶(ATE1)的特异性。系统发育分析表明,R-转移酶的底物特异性在真核生物进化过程中通过两条不同的途径产生。