Suppr超能文献

通过分子模拟研究HCN2通道中cAMP对细胞质结构域的调节作用。

cAMP Modulation of the cytoplasmic domain in the HCN2 channel investigated by molecular simulations.

作者信息

Berrera Marco, Pantano Sergio, Carloni Paolo

机构信息

Scuola Internazionale Superiore di Studi Avanzati and Istituto Nazionale per la Fisica della Materia, Democritos Modeling Center for Research in Atomic Simulation, Trieste, Italy.

出版信息

Biophys J. 2006 May 15;90(10):3428-33. doi: 10.1529/biophysj.105.071621. Epub 2006 Feb 24.

Abstract

The hyperpolarization-activated cyclic nucleotide-modulated (HCN) cation channels are opened by membrane hyperpolarization, while their activation is modulated by the binding of cyclic adenosine monophosphate (cAMP) in the cytoplasm. Here we investigate the molecular basis of cAMP channel modulation by performing molecular dynamics simulations of a segment comprising the C-linker and the cyclic nucleotide binding domain (CNBD) in the presence and absence of cAMP, based on the available crystal structure of HCN2 from mouse. In presence of cAMP, the protein undergoes an oscillation of the quaternary structure on the order of 10 ns, not observed in the apoprotein. In contrast, the absence of ligand causes conformational rearrangements within the CNBDs, driving these domains to a more flexible state, similar to that described in CNBDs of other proteins. This increased flexibility causes a rather disordered movement of the CNBDs, resulting in an inhibitory effect on the channel. We propose that the cAMP-triggered large-scale oscillation plays an important role for the channel's function, being coupled to a motion of the C-linker which, in turn, modulates the gating of the channel.

摘要

超极化激活的环核苷酸调制(HCN)阳离子通道由膜超极化开启,而其激活则受细胞质中环磷酸腺苷(cAMP)结合的调节。在此,我们基于小鼠HCN2的现有晶体结构,通过对包含C-连接子和环核苷酸结合结构域(CNBD)的片段在有无cAMP情况下进行分子动力学模拟,来研究cAMP对通道调制的分子基础。在有cAMP存在时,蛋白质会发生约10纳秒量级的四级结构振荡,这在脱辅基蛋白中未观察到。相反,没有配体时会导致CNBDs内的构象重排,使这些结构域处于更灵活的状态,类似于其他蛋白质的CNBDs中所描述的那样。这种增加的灵活性导致CNBDs的运动相当无序,从而对通道产生抑制作用。我们提出,cAMP触发的大规模振荡对通道功能起着重要作用,它与C-连接子的运动相耦合,而C-连接子的运动又反过来调节通道的门控。

相似文献

1
cAMP Modulation of the cytoplasmic domain in the HCN2 channel investigated by molecular simulations.
Biophys J. 2006 May 15;90(10):3428-33. doi: 10.1529/biophysj.105.071621. Epub 2006 Feb 24.
4
Structure of the SthK carboxy-terminal region reveals a gating mechanism for cyclic nucleotide-modulated ion channels.
PLoS One. 2015 Jan 27;10(1):e0116369. doi: 10.1371/journal.pone.0116369. eCollection 2015.
5
Molecular mechanism of cAMP modulation of HCN pacemaker channels.
Nature. 2001 Jun 14;411(6839):805-10. doi: 10.1038/35081088.
7
Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels.
J Gen Physiol. 2004 Dec;124(6):663-77. doi: 10.1085/jgp.200409178.
9
The HCN domain is required for HCN channel cell-surface expression and couples voltage- and cAMP-dependent gating mechanisms.
J Biol Chem. 2020 Jun 12;295(24):8164-8173. doi: 10.1074/jbc.RA120.013281. Epub 2020 Apr 27.
10
Structural basis for modulation and agonist specificity of HCN pacemaker channels.
Nature. 2003 Sep 11;425(6954):200-5. doi: 10.1038/nature01922.

引用本文的文献

2
Protein and surface expression of HCN2 and HCN4 subunits in mesocorticolimbic areas after cocaine sensitization.
Neurochem Int. 2019 May;125:91-98. doi: 10.1016/j.neuint.2019.02.004. Epub 2019 Feb 19.
3
Bioelectrical control of positional information in development and regeneration: A review of conceptual and computational advances.
Prog Biophys Mol Biol. 2018 Sep;137:52-68. doi: 10.1016/j.pbiomolbio.2018.03.008. Epub 2018 Apr 5.
4
Role of Dynamics in the Autoinhibition and Activation of the Hyperpolarization-activated Cyclic Nucleotide-modulated (HCN) Ion Channels.
J Biol Chem. 2015 Jul 17;290(29):17642-17654. doi: 10.1074/jbc.M115.651877. Epub 2015 May 4.
6
Energetics of cyclic AMP binding to HCN channel C terminus reveal negative cooperativity.
J Biol Chem. 2012 Jan 2;287(1):600-606. doi: 10.1074/jbc.M111.269563. Epub 2011 Nov 14.

本文引用的文献

1
A novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase.
J Biol Chem. 2005 Oct 7;280(40):34224-32. doi: 10.1074/jbc.M506544200. Epub 2005 Aug 3.
2
3
Molecular basis of the allosteric mechanism of cAMP in the regulatory PKA subunit.
FEBS Lett. 2005 May 9;579(12):2679-85. doi: 10.1016/j.febslet.2005.02.084. Epub 2005 Apr 14.
4
A gating mechanism proposed from a simulation of a human alpha7 nicotinic acetylcholine receptor.
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6813-8. doi: 10.1073/pnas.0407739102. Epub 2005 Apr 27.
6
The carboxyl-terminal region of cyclic nucleotide-modulated channels is a gating ring, not a permeation path.
Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2742-7. doi: 10.1073/pnas.0408323102. Epub 2005 Feb 14.
7
Ligand-induced conformational change in the alpha7 nicotinic receptor ligand binding domain.
Biophys J. 2005 Apr;88(4):2564-76. doi: 10.1529/biophysj.104.053934. Epub 2005 Jan 21.
8
The cAMP binding domain: an ancient signaling module.
Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):45-50. doi: 10.1073/pnas.0408579102. Epub 2004 Dec 23.
9
On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation.
J Gen Physiol. 2004 Dec;124(6):679-90. doi: 10.1085/jgp.200409111.
10
Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels.
J Gen Physiol. 2004 Dec;124(6):663-77. doi: 10.1085/jgp.200409178.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验