Suppr超能文献

内隐和外显记忆系统对学习控制伸手动作的可分离效应。

Dissociable effects of the implicit and explicit memory systems on learning control of reaching.

作者信息

Hwang Eun Jung, Smith Maurice A, Shadmehr Reza

机构信息

Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.

出版信息

Exp Brain Res. 2006 Aug;173(3):425-37. doi: 10.1007/s00221-006-0391-0. Epub 2006 Feb 28.

Abstract

Adaptive control of reaching depends on internal models that associate states in which the limb experienced a force perturbation with motor commands that can compensate for it. Limb state can be sensed via both vision and proprioception. However, adaptation of reaching in novel dynamics results in generalization in the intrinsic coordinates of the limb, suggesting that the proprioceptive states in which the limb was perturbed dominate representation of limb state. To test this hypothesis, we considered a task where position of the hand during a reach was correlated with patterns of force perturbation. This correlation could be sensed via vision, proprioception, or both. As predicted, when the correlations could be sensed only via proprioception, learning was significantly better as compared to when the correlations could only be sensed through vision. We found that learning with visual correlations resulted in subjects who could verbally describe the patterns of perturbations but this awareness was never observed in subjects who learned the task with only proprioceptive correlations. We manipulated the relative values of the visual and proprioceptive parameters and found that the probability of becoming aware strongly depended on the correlations that subjects could visually observe. In all conditions, aware subjects demonstrated a small but significant advantage in their ability to adapt their motor commands. Proprioceptive correlations produced an internal model that strongly influenced reaching performance yet did not lead to awareness. Visual correlations strongly increased the probability of becoming aware, yet had a much smaller but still significant effect on reaching performance. Therefore, practice resulted in acquisition of both implicit and explicit internal models.

摘要

到达动作的适应性控制依赖于内部模型,这些模型将肢体经历力扰动的状态与能够补偿该扰动的运动指令联系起来。肢体状态可以通过视觉和本体感觉来感知。然而,在新动力学中到达动作的适应性会导致在肢体固有坐标中的泛化,这表明肢体受到扰动时的本体感觉状态主导了肢体状态的表征。为了验证这一假设,我们考虑了一项任务,即在伸手过程中手的位置与力扰动模式相关。这种相关性可以通过视觉、本体感觉或两者来感知。正如预测的那样,当相关性只能通过本体感觉来感知时,与只能通过视觉感知相关性相比,学习效果显著更好。我们发现,通过视觉相关性进行学习的受试者能够口头描述扰动模式,但在仅通过本体感觉相关性学习任务的受试者中从未观察到这种意识。我们操纵了视觉和本体感觉参数的相对值,发现产生意识的概率强烈依赖于受试者能够视觉观察到的相关性。在所有条件下,有意识的受试者在调整运动指令的能力上表现出虽小但显著的优势。本体感觉相关性产生了一个强烈影响到达动作表现的内部模型,但并未导致意识。视觉相关性极大地增加了产生意识的概率,但对到达动作表现的影响要小得多但仍然显著。因此,练习导致了隐式和显式内部模型的习得。

相似文献

引用本文的文献

2
Visuomotor memory is not bound to visual motion.视觉运动记忆并不局限于视觉运动。
J Neurosci. 2025 Mar 14;45(17). doi: 10.1523/JNEUROSCI.1884-24.2025.
5
Challenges of neural interfaces for stroke motor rehabilitation.用于中风运动康复的神经接口面临的挑战。
Front Hum Neurosci. 2023 Sep 18;17:1070404. doi: 10.3389/fnhum.2023.1070404. eCollection 2023.
7
Concurrent Implicit Adaptation to Multiple Opposite Perturbations.同时适应多个相反的扰动。
eNeuro. 2023 Aug 7;10(8). doi: 10.1523/ENEURO.0066-23.2023. Print 2023 Aug.
10
What is the nature of motor adaptation to dynamic perturbations?运动适应动态扰动的本质是什么?
PLoS Comput Biol. 2022 Aug 30;18(8):e1010470. doi: 10.1371/journal.pcbi.1010470. eCollection 2022 Aug.

本文引用的文献

1
Motor learning by observing.通过观察进行运动学习。
Neuron. 2005 Apr 7;46(1):153-60. doi: 10.1016/j.neuron.2005.02.009.
5
Cognitive control signals for neural prosthetics.神经假体的认知控制信号
Science. 2004 Jul 9;305(5681):258-62. doi: 10.1126/science.1097938.
8
Multisensory integration during motor planning.运动规划过程中的多感官整合
J Neurosci. 2003 Aug 6;23(18):6982-92. doi: 10.1523/JNEUROSCI.23-18-06982.2003.
10
Transfer of motor learning across arm configurations.运动学习在不同手臂构型间的迁移。
J Neurosci. 2002 Nov 15;22(22):9656-60. doi: 10.1523/JNEUROSCI.22-22-09656.2002.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验