Suppr超能文献

相似文献

1
Muscle-driven forward dynamic simulations for the study of normal and pathological gait.
J Neuroeng Rehabil. 2006 Mar 6;3:5. doi: 10.1186/1743-0003-3-5.
3
Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait.
J Biomech. 2011 Jul 28;44(11):2096-105. doi: 10.1016/j.jbiomech.2011.05.023. Epub 2011 Jun 23.
4
Contributions of muscles to terminal-swing knee motions vary with walking speed.
J Biomech. 2007;40(16):3660-71. doi: 10.1016/j.jbiomech.2007.06.006. Epub 2007 Jul 19.
5
A musculoskeletal foot model for clinical gait analysis.
J Biomech. 2010 Jun 18;43(9):1645-52. doi: 10.1016/j.jbiomech.2010.03.005. Epub 2010 Apr 10.
6
Muscular coordination of knee motion during the terminal-swing phase of normal gait.
J Biomech. 2007;40(15):3314-24. doi: 10.1016/j.jbiomech.2007.05.006. Epub 2007 Jun 18.
8
A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2009 Apr;17(2):167-75. doi: 10.1109/TNSRE.2009.2014235. Epub 2009 Feb 3.
10
Normal human locomotion.
Prosthet Orthot Int. 1979 Apr;3(1):4-12. doi: 10.3109/03093647909164693.

引用本文的文献

1
GaitDynamics: A Generative Foundation Model for Analyzing Human Walking and Running.
Res Sq. 2025 Mar 21:rs.3.rs-6206222. doi: 10.21203/rs.3.rs-6206222/v1.
2
Beyond Inverse Dynamics: Methods for Assessment of Individual Muscle Function during Gait.
Bioengineering (Basel). 2024 Sep 6;11(9):896. doi: 10.3390/bioengineering11090896.
3
Does joint impedance improve dynamic leg simulations with explicit and implicit solvers?
PLoS One. 2023 Jul 3;18(7):e0282130. doi: 10.1371/journal.pone.0282130. eCollection 2023.
4
Ten steps to becoming a musculoskeletal simulation expert: A half-century of progress and outlook for the future.
J Biomech. 2023 Jun;154:111623. doi: 10.1016/j.jbiomech.2023.111623. Epub 2023 May 10.
5
Does joint impedance improve dynamic leg simulations with explicit and implicit solvers?
bioRxiv. 2023 Feb 9:2023.02.09.527805. doi: 10.1101/2023.02.09.527805.
7
The functional roles of muscles during sloped walking.
J Biomech. 2016 Oct 3;49(14):3244-3251. doi: 10.1016/j.jbiomech.2016.08.004. Epub 2016 Aug 6.
8
MOtoNMS: A MATLAB toolbox to process motion data for neuromusculoskeletal modeling and simulation.
Source Code Biol Med. 2015 Nov 16;10:12. doi: 10.1186/s13029-015-0044-4. eCollection 2015.
9
10
Simbody: multibody dynamics for biomedical research.
Procedia IUTAM. 2011;2:241-261. doi: 10.1016/j.piutam.2011.04.023.

本文引用的文献

1
Induced acceleration contributions to locomotion dynamics are not physically well defined.
Gait Posture. 2006 Jan;23(1):37-44. doi: 10.1016/j.gaitpost.2004.11.016. Epub 2005 Jan 8.
3
Differences in muscle function during walking and running at the same speed.
J Biomech. 2006;39(11):2005-13. doi: 10.1016/j.jbiomech.2005.06.019. Epub 2005 Aug 29.
4
Using induced accelerations to understand knee stability during gait of individuals with muscle weakness.
Gait Posture. 2006 Jun;23(4):435-40. doi: 10.1016/j.gaitpost.2005.05.007. Epub 2005 Aug 10.
5
Minimizing center of mass vertical movement increases metabolic cost in walking.
J Appl Physiol (1985). 2005 Dec;99(6):2099-107. doi: 10.1152/japplphysiol.00103.2005. Epub 2005 Jul 28.
6
Muscle contributions to support during gait in an individual with post-stroke hemiparesis.
J Biomech. 2006;39(10):1769-77. doi: 10.1016/j.jbiomech.2005.05.032. Epub 2005 Jul 25.
7
Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed.
Gait Posture. 2006 Apr;23(3):383-90. doi: 10.1016/j.gaitpost.2005.05.002. Epub 2005 Jul 18.
8
Three-dimensional representation of complex muscle architectures and geometries.
Ann Biomed Eng. 2005 May;33(5):661-73. doi: 10.1007/s10439-005-1433-7.
9
Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models.
J Biomech. 2006;39(8):1383-91. doi: 10.1016/j.jbiomech.2005.04.012. Epub 2005 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验