Suppr超能文献

使用联合建模方法量化纵向中介和生存结局的直接和间接效应。

Quantifying direct and indirect effect for longitudinal mediator and survival outcome using joint modeling approach.

机构信息

Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA.

Division of Biostatistics, Washington University in St. Louis, St. Louis, Missouri, USA.

出版信息

Biometrics. 2022 Sep;78(3):1233-1243. doi: 10.1111/biom.13475. Epub 2021 May 4.

Abstract

Longitudinal biomarkers are widely used in biomedical and translational researches to monitor the progressions of diseases. Methods have been proposed to jointly model longitudinal data and survival data, but its causal mechanism is yet to be investigated rigorously. Understanding how much of the total treatment effect is through the biomarker is important in understanding the treatment mechanism and evaluating the biomarker. In this work, we propose a causal mediation analysis method to compute the direct and indirect effects, when a joint modeling approach is used to take the longitudinal biomarker as the mediator and the survival endpoint as the outcome. Such a joint modeling approach allows us to relax the commonly used "sequential ignorability" assumption. We demonstrate how to evaluate longitudinally measured biomarkers using our method with two case studies, an AIDS study and a liver cirrhosis study.

摘要

纵向生物标志物广泛应用于生物医学和转化研究中,以监测疾病的进展。已经提出了一些方法来联合建模纵向数据和生存数据,但它的因果机制仍需要严格地研究。了解治疗效果中有多少是通过生物标志物实现的,对于理解治疗机制和评估生物标志物非常重要。在这项工作中,我们提出了一种因果中介分析方法,以计算当联合建模方法将纵向生物标志物作为中介,生存终点作为结果时的直接和间接效应。这种联合建模方法允许我们放宽常用的“顺序可忽略性”假设。我们通过两个案例研究,即艾滋病研究和肝硬化研究,展示了如何使用我们的方法来评估纵向测量的生物标志物。

相似文献

1
Quantifying direct and indirect effect for longitudinal mediator and survival outcome using joint modeling approach.
Biometrics. 2022 Sep;78(3):1233-1243. doi: 10.1111/biom.13475. Epub 2021 May 4.
3
Exploring causality mechanism in the joint analysis of longitudinal and survival data.
Stat Med. 2018 Nov 20;37(26):3733-3744. doi: 10.1002/sim.7838. Epub 2018 Jun 7.
4
Continuous-time causal mediation analysis.
Stat Med. 2019 Sep 30;38(22):4334-4347. doi: 10.1002/sim.8300. Epub 2019 Jul 8.
5
6
Causal mediation analysis with mediator values below an assay limit.
Stat Med. 2024 May 30;43(12):2299-2313. doi: 10.1002/sim.10065. Epub 2024 Mar 31.
7
Causal mediation analysis with sure outcomes of random events model.
Stat Med. 2021 Jul 30;40(17):3975-3989. doi: 10.1002/sim.9009. Epub 2021 Apr 26.
8
A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior.
J Agric Biol Environ Stat. 2023 Jun;28(2):197-218. doi: 10.1007/s13253-022-00490-6. Epub 2022 Apr 5.
9
Causal mediation and sensitivity analysis for mixed-scale data.
Stat Methods Med Res. 2023 Jul;32(7):1249-1266. doi: 10.1177/09622802231173491. Epub 2023 May 17.
10
Gaussian variational approximate inference for joint models of longitudinal biomarkers and a survival outcome.
Stat Med. 2023 Feb 10;42(3):316-330. doi: 10.1002/sim.9619. Epub 2022 Nov 28.

引用本文的文献

1
Robust evaluation of longitudinal surrogate markers with censored data.
J R Stat Soc Series B Stat Methodol. 2024 Dec 26;87(3):891-907. doi: 10.1093/jrsssb/qkae119. eCollection 2025 Jul.
3
High-dimensional mediation analysis for longitudinal mediators and survival outcomes.
Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf206.
7
Modeling the underlying biological processes in Alzheimer's disease using a multivariate competing risk joint model.
Stat Med. 2022 Jul 30;41(17):3421-3433. doi: 10.1002/sim.9425. Epub 2022 May 18.
8
Mediation analysis for survival data with high-dimensional mediators.
Bioinformatics. 2021 Nov 5;37(21):3815-3821. doi: 10.1093/bioinformatics/btab564.

本文引用的文献

1
Model-free approach to quantifying the proportion of treatment effect explained by a surrogate marker.
Biometrika. 2020 Mar;107(1):107-122. doi: 10.1093/biomet/asz065. Epub 2019 Dec 24.
2
Estimation of Controlled Direct Effects in Longitudinal Mediation Analyses with Latent Variables in Randomized Studies.
Multivariate Behav Res. 2020 Sep-Oct;55(5):763-785. doi: 10.1080/00273171.2019.1681251. Epub 2019 Nov 15.
3
Defining causal mediation with a longitudinal mediator and a survival outcome.
Lifetime Data Anal. 2019 Oct;25(4):593-610. doi: 10.1007/s10985-018-9449-0. Epub 2018 Sep 14.
4
Exploring causality mechanism in the joint analysis of longitudinal and survival data.
Stat Med. 2018 Nov 20;37(26):3733-3744. doi: 10.1002/sim.7838. Epub 2018 Jun 7.
5
Longitudinal Mediation Analysis with Time-varying Mediators and Exposures, with Application to Survival Outcomes.
J Causal Inference. 2017 Sep;5(2). doi: 10.1515/jci-2016-0006. Epub 2017 Jun 23.
6
Mediation analysis for a survival outcome with time-varying exposures, mediators, and confounders.
Stat Med. 2017 Nov 20;36(26):4153-4166. doi: 10.1002/sim.7426. Epub 2017 Aug 15.
7
Causal Mediation Analysis of Survival Outcome with Multiple Mediators.
Epidemiology. 2017 May;28(3):370-378. doi: 10.1097/EDE.0000000000000651.
8
Evaluating surrogate marker information using censored data.
Stat Med. 2017 May 20;36(11):1767-1782. doi: 10.1002/sim.7220. Epub 2017 Jan 15.
9
Causal mediation analysis on failure time outcome without sequential ignorability.
Lifetime Data Anal. 2017 Oct;23(4):533-559. doi: 10.1007/s10985-016-9377-9. Epub 2016 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验