Suppr超能文献

基于非局部均值的瑞利噪声滤波在人脑和脊髓扩散张量和峰度成像中的应用。

Non-local means based Rician noise filtering for diffusion tensor and kurtosis imaging in human brain and spinal cord.

机构信息

Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong SAR, China.

Philips Healthcare, Shanghai, China.

出版信息

BMC Med Imaging. 2021 Jan 30;21(1):16. doi: 10.1186/s12880-021-00549-9.

Abstract

BACKGROUND

To investigate the effect of using a Rician nonlocal means (NLM) filter on quantification of diffusion tensor (DT)- and diffusion kurtosis (DK)-derived metrics in various anatomical regions of the human brain and the spinal cord, when combined with a constrained linear least squares (CLLS) approach.

METHODS

Prospective brain data from 9 healthy subjects and retrospective spinal cord data from 5 healthy subjects from a 3 T MRI scanner were included in the study. Prior to tensor estimation, registered diffusion weighted images were denoised by an optimized blockwise NLM filter with CLLS. Mean kurtosis (MK), radial kurtosis (RK), axial kurtosis (AK), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD) and fractional anisotropy (FA), were determined in anatomical structures of the brain and the spinal cord. DTI and DKI metrics, signal-to-noise ratio (SNR) and Chi-square values were quantified in distinct anatomical regions for all subjects, with and without Rician denoising.

RESULTS

The averaged SNR significantly increased with Rician denoising by a factor of 2 while the averaged Chi-square values significantly decreased up to 61% in the brain and up to 43% in the spinal cord after Rician NLM filtering. In the brain, the mean MK varied from 0.70 (putamen) to 1.27 (internal capsule) while AK and RK varied from 0.58 (corpus callosum) to 0.92 (cingulum) and from 0.70 (putamen) to 1.98 (corpus callosum), respectively. In the spinal cord, FA varied from 0.78 in lateral column to 0.81 in dorsal column while MD varied from 0.91 × 10 mm/s (lateral) to 0.93 × 10 mm/s (dorsal). RD varied from 0.34 × 10 mm/s (dorsal) to 0.38 × 10 mm/s (lateral) and AD varied from 1.96 × 10 mm/s (lateral) to 2.11 × 10 mm/s (dorsal).

CONCLUSIONS

Our results show a Rician denoising NLM filter incorporated with CLLS significantly increases SNR and reduces estimation errors of DT- and KT-derived metrics, providing the reliable metrics estimation with adequate SNR levels.

摘要

背景

本研究旨在探讨瑞利非局部均值(NLM)滤波器与约束线性最小二乘法(CLLS)相结合,对人体脑和脊髓各解剖区域的扩散张量(DT)和扩散峰度(DK)衍生指标进行定量分析的效果。

方法

本研究纳入了 9 名健康受试者的前瞻性脑部数据和 5 名健康受试者的回顾性脊髓数据,这些数据均来自于 3T MRI 扫描仪。在进行张量估计之前,通过优化的分块 NLM 滤波器与 CLLS 对配准的扩散加权图像进行去噪。在脑和脊髓的解剖结构中,确定了平均峰度(MK)、径向峰度(RK)、轴向峰度(AK)、平均弥散度(MD)、径向弥散度(RD)、轴向弥散度(AD)和各向异性分数(FA)。对所有受试者的不同解剖区域,分别在有无瑞利去噪的情况下,量化了 DTI 和 DK 指标、信噪比(SNR)和卡方值。

结果

在脑部,瑞利去噪后,平均 SNR 增加了 2 倍,而平均卡方值降低了 61%,在脊髓,平均卡方值降低了 43%。在脑部,MK 平均值从(壳核)的 0.70 变化到(内囊)的 1.27,AK 和 RK 平均值分别从(胼胝体)的 0.58 变化到(扣带)的 0.92 和从(壳核)的 0.70 变化到(胼胝体)的 1.98。在脊髓,FA 从侧柱的 0.78 变化到背柱的 0.81,MD 从(侧)的 0.91×10mm/s 变化到(背)的 0.93×10mm/s,RD 从(背)的 0.34×10mm/s 变化到(侧)的 0.38×10mm/s,AD 从(侧)的 1.96×10mm/s 变化到(背)的 2.11×10mm/s。

结论

我们的研究结果表明,瑞利滤波与 CLLS 相结合的 NLM 滤波器可以显著提高 SNR,并减少 DT 和 KT 衍生指标的估计误差,在具有足够 SNR 水平的情况下,提供可靠的指标估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9eeb/7847150/0375a11c6484/12880_2021_549_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验