Suppr超能文献

负载于薄氧化膜上的金:从单原子到纳米颗粒

Gold supported on thin oxide films: from single atoms to nanoparticles.

作者信息

Risse Thomas, Shaikhutdinov Shamil, Nilius Niklas, Sterrer Martin, Freund Hans-Joachim

机构信息

Department of Chemical Physics, Fritz-Haber-Institute der Max-Plank-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.

出版信息

Acc Chem Res. 2008 Aug;41(8):949-56. doi: 10.1021/ar800078m. Epub 2008 Jul 11.

Abstract

[Figure: see text]. Historically, people have prized gold for its beauty and the durability that resulted from its chemical inertness. However, even the ancient Romans had noted that finely dispersed gold can give rise to particular optical phenomena. A decade ago, researchers found that highly dispersed gold supported on oxides exhibits high chemical activity in a number of reactions. These chemical and optical properties have recently prompted considerable interest in applications of nanodispersed gold. Despite their broad use, a microscopic understanding of these gold-metal oxide systems lags behind their application. Numerous studies are currently underway to understand why supported nanometer-sized gold particles show catalytic activity and to explore possible applications of their optical properties in photonics and biology. This Account focuses on a microscopic understanding of the gold-substrate interaction and its impact on the properties of the adsorbed gold. Our strategy uses model systems in which gold atoms and clusters are supported on well-ordered thin oxide films grown on metal single crystals. As a result, we can investigate the systems with the rigor of modern surface science techniques while incorporating some of the complexity found in technological applications. We use a variety of different experimental methods, namely, scanning probe techniques (scanning tunneling microscopy and spectroscopy, STM and STS), as well as infrared (IR), temperature-programmed desorption (TPD), and electron paramagnetic resonance (EPR) spectroscopy, to evaluate these interactions and combine these results with theoretical calculations. We examined the properties of supported gold with increasing complexity starting from single gold atoms to one- and two-dimensional clusters and three-dimensional particles. These investigations show that the binding of gold on oxide surfaces depends on the properties of the oxide, which leads to different electronic properties of the Au deposits. Changes in the electronic structure, namely, the charge state of Au atoms and clusters, can be induced by surface defects such as color centers. Interestingly, the film thickness can also serve as a parameter to alter the properties of Au. Thin MgO films (two to three monolayer thickness) stabilize negatively charged Au atoms and two-dimensional Au particles. In three dimensions, the properties of Au particles bigger than 2-3 nm in diameter are largely independent of the support. Smaller three-dimensional particles, however, showed differences based on the supporting oxide. Presumably, the oxide support stabilizes particular atomic configurations, charge states, or electronic properties of the ultrasmall Au aggregates, which are in turn responsible for this distinct chemical behavior.

摘要

[图:见正文]。从历史上看,人们因其美丽以及化学惰性所带来的耐久性而珍视黄金。然而,即使是古罗马人也已注意到,高度分散的金会引发特定的光学现象。十年前,研究人员发现负载在氧化物上的高度分散的金在许多反应中表现出高化学活性。这些化学和光学性质最近引发了人们对纳米分散金应用的极大兴趣。尽管其应用广泛,但对这些金 - 金属氧化物体系的微观理解却落后于其应用。目前正在进行大量研究,以了解负载的纳米级金颗粒为何具有催化活性,并探索其光学性质在光子学和生物学中的可能应用。本综述着重于对金 - 底物相互作用及其对吸附金性质的影响的微观理解。我们的策略是使用模型体系,其中金原子和团簇负载在生长于金属单晶上的有序薄氧化物薄膜上。因此,我们可以运用现代表面科学技术的严谨性来研究这些体系,同时纳入技术应用中发现的一些复杂性。我们使用多种不同的实验方法,即扫描探针技术(扫描隧道显微镜和光谱,STM和STS),以及红外(IR)、程序升温脱附(TPD)和电子顺磁共振(EPR)光谱,来评估这些相互作用,并将这些结果与理论计算相结合。我们从单个金原子开始,逐步研究了负载金从一维、二维团簇到三维颗粒等越来越复杂结构的性质。这些研究表明,金在氧化物表面的结合取决于氧化物的性质,这导致了金沉积物不同的电子性质。电子结构的变化,即金原子和团簇的电荷状态,可以由诸如色心等表面缺陷诱导。有趣的是,薄膜厚度也可作为改变金性质的一个参数。薄的MgO薄膜(两到三个单层厚度)可稳定带负电荷的金原子和二维金颗粒。在三维情况下,直径大于2 - 3nm的金颗粒的性质在很大程度上与载体无关。然而,较小的三维颗粒则根据所负载的氧化物表现出差异。据推测,氧化物载体稳定了超小金聚集体的特定原子构型、电荷状态或电子性质,而这些反过来又导致了这种独特的化学行为。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验