Suppr超能文献

源自多参数单细胞数据的因果蛋白信号网络。

Causal protein-signaling networks derived from multiparameter single-cell data.

作者信息

Sachs Karen, Perez Omar, Pe'er Dana, Lauffenburger Douglas A, Nolan Garry P

机构信息

Biological Engineering Division, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.

出版信息

Science. 2005 Apr 22;308(5721):523-9. doi: 10.1126/science.1105809.

Abstract

Machine learning was applied for the automated derivation of causal influences in cellular signaling networks. This derivation relied on the simultaneous measurement of multiple phosphorylated protein and phospholipid components in thousands of individual primary human immune system cells. Perturbing these cells with molecular interventions drove the ordering of connections between pathway components, wherein Bayesian network computational methods automatically elucidated most of the traditionally reported signaling relationships and predicted novel interpathway network causalities, which we verified experimentally. Reconstruction of network models from physiologically relevant primary single cells might be applied to understanding native-state tissue signaling biology, complex drug actions, and dysfunctional signaling in diseased cells.

摘要

机器学习被应用于细胞信号网络中因果影响的自动推导。这种推导依赖于对数千个个体原代人类免疫系统细胞中多种磷酸化蛋白质和磷脂成分的同时测量。用分子干预扰动这些细胞推动了信号通路成分之间连接的排序,其中贝叶斯网络计算方法自动阐明了大多数传统报道的信号关系,并预测了新的信号通路间网络因果关系,我们通过实验对其进行了验证。从生理相关的原代单细胞重建网络模型可能适用于理解天然状态组织的信号生物学、复杂药物作用以及患病细胞中的信号功能障碍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验