Sachs Karen, Perez Omar, Pe'er Dana, Lauffenburger Douglas A, Nolan Garry P
Biological Engineering Division, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
Science. 2005 Apr 22;308(5721):523-9. doi: 10.1126/science.1105809.
Machine learning was applied for the automated derivation of causal influences in cellular signaling networks. This derivation relied on the simultaneous measurement of multiple phosphorylated protein and phospholipid components in thousands of individual primary human immune system cells. Perturbing these cells with molecular interventions drove the ordering of connections between pathway components, wherein Bayesian network computational methods automatically elucidated most of the traditionally reported signaling relationships and predicted novel interpathway network causalities, which we verified experimentally. Reconstruction of network models from physiologically relevant primary single cells might be applied to understanding native-state tissue signaling biology, complex drug actions, and dysfunctional signaling in diseased cells.
机器学习被应用于细胞信号网络中因果影响的自动推导。这种推导依赖于对数千个个体原代人类免疫系统细胞中多种磷酸化蛋白质和磷脂成分的同时测量。用分子干预扰动这些细胞推动了信号通路成分之间连接的排序,其中贝叶斯网络计算方法自动阐明了大多数传统报道的信号关系,并预测了新的信号通路间网络因果关系,我们通过实验对其进行了验证。从生理相关的原代单细胞重建网络模型可能适用于理解天然状态组织的信号生物学、复杂药物作用以及患病细胞中的信号功能障碍。