Axmacher Nikolai, Mormann Florian, Fernández Guillen, Elger Christian E, Fell Juergen
Department of Epileptology, University of Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany.
Brain Res Rev. 2006 Aug 30;52(1):170-82. doi: 10.1016/j.brainresrev.2006.01.007. Epub 2006 Mar 20.
Cognitive functions not only depend on the localization of neural activity, but also on the precise temporal pattern of activity in neural assemblies. Synchronization of action potential discharges provides a link between large-scale EEG recordings and cellular plasticity mechanisms. Here, we focus on the role of neuronal synchronization in different frequency domains for the subsequent stages of memory formation. Recent EEG studies suggest that synchronized neural activity in the gamma frequency range (around 30-100 Hz) plays a functional role for the formation of declarative long-term memories in humans. On the cellular level, gamma synchronization between hippocampal and parahippocampal regions may induce LTP in the CA3 region of the hippocampus. In order to encode spatial locations or sequences of multiple items and to guarantee a defined temporal order of memory processing, synchronization in the gamma frequency range has to be accompanied by a stimulus-locked phase reset of ongoing theta oscillations. Simultaneous gamma- and theta-dependent plasticity leads to complex learning rules required for realistic declarative memory formation. Subsequently, consolidation of declarative memories may occur via replay of newly acquired patterns in so-called sharp wave-ripple complexes, predominantly during slow-wave sleep. These irregular bursts induce longer lasting forms of synaptic plasticity in output regions of the hippocampus and in the neocortex. In summary, synchronization of neural assemblies in different frequency ranges induces specific forms of cellular plasticity during subsequent stages of memory formation.
认知功能不仅取决于神经活动的定位,还取决于神经集合中活动的精确时间模式。动作电位发放的同步为大规模脑电图记录与细胞可塑性机制之间提供了联系。在这里,我们关注神经元同步在不同频率域中对记忆形成后续阶段的作用。最近的脑电图研究表明,γ频率范围(约30 - 100赫兹)内的同步神经活动对人类陈述性长期记忆的形成具有功能性作用。在细胞水平上,海马体和海马旁区域之间的γ同步可能会在海马体的CA3区域诱导长时程增强。为了编码多个项目的空间位置或序列,并确保记忆处理有明确的时间顺序,γ频率范围内的同步必须伴随着正在进行的θ振荡的刺激锁定相位重置。γ和θ依赖的同时可塑性导致了现实陈述性记忆形成所需的复杂学习规则。随后,陈述性记忆的巩固可能通过在所谓的尖波涟漪复合体中重放新获得的模式来实现,主要发生在慢波睡眠期间。这些不规则爆发在海马体的输出区域和新皮层中诱导出更持久的突触可塑性形式。总之,不同频率范围内神经集合的同步在记忆形成的后续阶段诱导出特定形式的细胞可塑性。