Mergaert Peter, Uchiumi Toshiki, Alunni Benoît, Evanno Gwénaëlle, Cheron Angélique, Catrice Olivier, Mausset Anne-Elisabeth, Barloy-Hubler Frédérique, Galibert Francis, Kondorosi Adam, Kondorosi Eva
Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette Cedex, France.
Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5230-5. doi: 10.1073/pnas.0600912103. Epub 2006 Mar 17.
Symbiosis between legumes and Rhizobium bacteria leads to the formation of root nodules where bacteria in the infected plant cells are converted into nitrogen-fixing bacteroids. Nodules with a persistent meristem are indeterminate, whereas nodules without meristem are determinate. The symbiotic plant cells in both nodule types are polyploid because of several cycles of endoreduplication (genome replication without mitosis and cytokinesis) and grow consequently to extreme sizes. Here we demonstrate that differentiation of bacteroids in indeterminate nodules of Medicago and related legumes from the galegoid clade shows remarkable similarity to host cell differentiation. During bacteroid maturation, repeated DNA replication without cytokinesis results in extensive amplification of the entire bacterial genome and elongation of bacteria. This finding reveals a positive correlation in prokaryotes between DNA content and cell size, similar to that in eukaryotes. These polyploid bacteroids are metabolically functional but display increased membrane permeability and are nonviable, because they lose their ability to resume growth. In contrast, bacteroids in determinate nodules of the nongalegoid legumes lotus and bean are comparable to free-living bacteria in their genomic DNA content, cell size, and viability. Using recombinant Rhizobium strains nodulating both legume types, we show that bacteroid differentiation is controlled by the host plant. Plant factors present in nodules of galegoid legumes but absent from nodules of nongalegoid legumes block bacterial cell division and trigger endoreduplication cycles, thereby forcing the endosymbionts toward a terminally differentiated state. Hence, Medicago and related legumes have evolved a mechanism to dominate the symbiosis.
豆科植物与根瘤菌之间的共生关系导致根瘤的形成,在被感染的植物细胞中,细菌会转化为固氮类菌体。具有持续分生组织的根瘤是不定型的,而没有分生组织的根瘤是定型的。由于多次核内复制循环(基因组复制但无有丝分裂和胞质分裂),这两种类型根瘤中的共生植物细胞都是多倍体,因此会生长到极大的尺寸。在这里,我们证明了来自山羊豆分支的苜蓿和相关豆科植物不定型根瘤中类菌体的分化与宿主细胞分化具有显著的相似性。在类菌体成熟过程中,没有胞质分裂的重复DNA复制导致整个细菌基因组的大量扩增和细菌的伸长。这一发现揭示了原核生物中DNA含量与细胞大小之间存在正相关,类似于真核生物中的情况。这些多倍体类菌体具有代谢功能,但膜通透性增加且无活力,因为它们失去了恢复生长的能力。相比之下,非山羊豆科植物百脉根和菜豆的定型根瘤中的类菌体在基因组DNA含量、细胞大小和活力方面与自由生活的细菌相当。使用能够使这两种豆科植物都结瘤的重组根瘤菌菌株,我们表明类菌体的分化受宿主植物控制。存在于山羊豆科植物根瘤中但不存在于非山羊豆科植物根瘤中的植物因子会阻断细菌细胞分裂并触发核内复制循环,从而迫使内共生体进入终末分化状态。因此,苜蓿和相关豆科植物已经进化出一种主导共生关系的机制。