Suppr超能文献

由铜(III)-氧介导的多巴胺β-单加氧酶的催化机制。

Catalytic mechanism of dopamine beta-monooxygenase mediated by Cu(III)-oxo.

作者信息

Yoshizawa Kazunari, Kihara Naoki, Kamachi Takashi, Shiota Yoshihito

机构信息

Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 812-8581, Japan.

出版信息

Inorg Chem. 2006 Apr 3;45(7):3034-41. doi: 10.1021/ic0521168.

Abstract

Mechanisms of dopamine hydroxylation by the Cu(II)-superoxo species and the Cu(III)-oxo species of dopamine beta-monooxygenase (DBM) are discussed using QM/MM calculations for a whole-enzyme model of 4700 atoms. A calculated activation barrier for the hydrogen-atom abstraction by the Cu(II)-superoxo species is 23.1 kcal/mol, while that of the Cu(III)-oxo, which can be viewed as Cu(II)-O*, is 5.4 kcal/mol. Energies of the optimized radical intermediate in the superoxo- and oxo-mediated pathways are 18.4 and -14.2 kcal/mol, relative to the corresponding reactant complexes, respectively. These results demonstrate that the Cu(III)-oxo species can better mediate dopamine hydroxylation in the protein environment of DBM. The side chains of three amino acid residues (His415, His417, and Met490) coordinate to the Cu(B) atom, one of the copper sites in the catalytic core that plays a role for the catalytic function. The hydrogen-bonding network between dopamine and the three amino acid residues (Glu268, Glu369, and Tyr494) plays an essential role in substrate binding and the stereospecific hydroxylation of dopamine to norepinephrine. The dopamine hydroxylation by the Cu(III)-oxo species is a downhill and lower-barrier process toward the product direction with the aid of the protein environment of DBM. This enzyme is likely to use the high reactivity of the Cu(III)-oxo species to activate the benzylic C-H bond of dopamine; the enzymatic reaction can be explained by the so-called oxygen rebound mechanism.

摘要

利用包含4700个原子的全酶模型,通过量子力学/分子力学(QM/MM)计算,讨论了多巴胺β-单加氧酶(DBM)的Cu(II)-超氧物种和Cu(III)-氧物种催化多巴胺羟基化的机制。计算得出,Cu(II)-超氧物种夺取氢原子的活化能垒为23.1千卡/摩尔,而可视为Cu(II)-O*的Cu(III)-氧物种的活化能垒为5.4千卡/摩尔。相对于相应的反应物复合物,超氧介导途径和氧介导途径中优化后的自由基中间体的能量分别为18.4千卡/摩尔和-14.2千卡/摩尔。这些结果表明,在DBM的蛋白质环境中,Cu(III)-氧物种能更好地介导多巴胺的羟基化。三个氨基酸残基(His415、His417和Met490)的侧链与催化核心中的一个铜位点Cu(B)原子配位,该铜位点对催化功能起作用。多巴胺与三个氨基酸残基(Glu268、Glu369和Tyr494)之间的氢键网络在底物结合以及多巴胺立体选择性羟基化为去甲肾上腺素的过程中起着至关重要的作用。在DBM的蛋白质环境的帮助下,Cu(III)-氧物种催化多巴胺羟基化是一个朝着产物方向的下坡且低能垒过程。这种酶可能利用Cu(III)-氧物种的高反应活性来激活多巴胺的苄基C-H键;酶促反应可用所谓的氧反弹机制来解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验