Ghosh S, Wang W H, Mendoza F M, Myers R C, Li X, Samarth N, Gossard A C, Awschalom D D
Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106, USA.
Nat Mater. 2006 Apr;5(4):261-4. doi: 10.1038/nmat1587. Epub 2006 Mar 26.
Semiconductor microcavities offer unique means of controlling light-matter interactions in confined geometries, resulting in a wide range of applications in optical communications and inspiring proposals for quantum information processing and computational schemes. Studies of spin dynamics in microcavities, a new and promising research field, have revealed effects such as polarization beats, stimulated spin scattering and giant Faraday rotation. Here, we study the electron spin dynamics in optically pumped GaAs microdisc lasers with quantum wells and interface-fluctuation quantum dots in the active region. In particular, we examine how the electron spin dynamics are modified by the stimulated emission in the discs, and observe an enhancement of the spin-coherence time when the optical excitation is in resonance with a high-quality (Q approximately 5,000) lasing mode. This resonant enhancement, contrary to expectations from the observed trend in the carrier-recombination time, is then manipulated by altering the cavity design and dimensions. In analogy with devices based on excitonic coherence, this ability to engineer coherent interactions between electron spins and photons may provide new pathways towards spin-dependent quantum optoelectronics.
半导体微腔提供了在受限几何结构中控制光与物质相互作用的独特方法,从而在光通信领域有广泛应用,并为量子信息处理和计算方案带来了富有启发性的提议。微腔中自旋动力学的研究是一个新的且有前景的研究领域,已揭示出诸如极化拍频、受激自旋散射和巨大法拉第旋转等效应。在此,我们研究有源区带有量子阱和界面起伏量子点的光泵浦GaAs微盘激光器中的电子自旋动力学。特别地,我们研究了盘内受激辐射如何改变电子自旋动力学,并观察到当光激发与高品质(Q约为5000)激光模式共振时自旋相干时间的增强。然后,通过改变腔的设计和尺寸来操控这种与载流子复合时间中观察到的趋势相悖的共振增强。类似于基于激子相干的器件,这种设计电子自旋与光子之间相干相互作用的能力可能为自旋相关量子光电子学提供新途径。