de Souza Silva Clécio C, Van de Vondel Joris, Morelle Mathieu, Moshchalkov Victor V
INPAC-Institute for Nanoscale Physics and Chemistry, Nanoscale Superconductivity and Magnetism Group, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium.
Nature. 2006 Mar 30;440(7084):651-4. doi: 10.1038/nature04595.
A single particle confined in an asymmetric potential demonstrates an anticipated ratchet effect by drifting along the 'easy' ratchet direction when subjected to non-equilibrium fluctuations. This well-known effect can, however, be dramatically changed if the potential captures several interacting particles. Here we demonstrate that the inter-particle interactions in a chain of repelling particles captured by a ratchet potential can, in a controllable way, lead to multiple drift reversals, with the drift sign alternating from positive to negative as the number of particles per ratchet period changes from odd to even. To demonstrate experimentally the validity of this very general prediction, we performed transport measurements on a.c.-driven vortices trapped in a superconductor by an array of nanometre-scale asymmetric traps. We found that the direction of the vortex drift does undergo multiple reversals as the vortex density is increased, in excellent agreement with the model predictions. This drastic change in the drift behaviour between single- and multi-particle systems can shed some light on the different behaviour of ratchets and biomembranes in two drift regimes: diluted (single particles) and concentrated (interacting particles).
单个粒子被限制在非对称势场中时,在受到非平衡涨落作用下,会沿“容易”的棘轮方向漂移,从而展现出预期的棘轮效应。然而,如果势场捕获了多个相互作用的粒子,这种众所周知的效应会发生显著变化。在此,我们证明,被棘轮势捕获的一排排斥粒子间的相互作用,能够以可控的方式导致多次漂移反转,随着每个棘轮周期内粒子数从奇数变为偶数,漂移符号会从正变为负。为了通过实验证明这一非常普遍的预测的有效性,我们对由纳米级非对称陷阱阵列捕获在超导体中的交流驱动涡旋进行了输运测量。我们发现,随着涡旋密度的增加,涡旋漂移方向确实会发生多次反转,这与模型预测结果高度吻合。单粒子系统和多粒子系统之间漂移行为的这种剧烈变化,能够为棘轮和生物膜在两种漂移状态(稀释态(单粒子)和浓缩态(相互作用粒子))下的不同行为提供一些启示。