Suppr超能文献

在消费者研究中使用自动人类情感分析的机遇与挑战。

Opportunities and Challenges for Using Automatic Human Affect Analysis in Consumer Research.

作者信息

Küster Dennis, Krumhuber Eva G, Steinert Lars, Ahuja Anuj, Baker Marc, Schultz Tanja

机构信息

Cognitive Systems Lab, Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany.

Department of Psychology and Methods, Jacobs University Bremen, Bremen, Germany.

出版信息

Front Neurosci. 2020 Apr 28;14:400. doi: 10.3389/fnins.2020.00400. eCollection 2020.

Abstract

The ability to automatically assess emotional responses via contact-free video recording taps into a rapidly growing market aimed at predicting consumer choices. If consumer attention and engagement are measurable in a reliable and accessible manner, relevant marketing decisions could be informed by objective data. Although significant advances have been made in automatic affect recognition, several practical and theoretical issues remain largely unresolved. These concern the lack of cross-system validation, a historical emphasis of posed over spontaneous expressions, as well as more fundamental issues regarding the weak association between subjective experience and facial expressions. To address these limitations, the present paper argues that extant commercial and free facial expression classifiers should be rigorously validated in cross-system research. Furthermore, academics and practitioners must better leverage fine-grained emotional response dynamics, with stronger emphasis on understanding naturally occurring spontaneous expressions, and in naturalistic choice settings. We posit that applied consumer research might be better situated to examine facial behavior in socio-emotional contexts rather than decontextualized, laboratory studies, and highlight how AHAA can be successfully employed in this context. Also, facial activity should be considered less as a single outcome variable, and more as a starting point for further analyses. Implications of this approach and potential obstacles that need to be overcome are discussed within the context of consumer research.

摘要

通过非接触式视频记录自动评估情绪反应的能力,进入了一个快速增长的市场,该市场旨在预测消费者的选择。如果能够以可靠且便捷的方式衡量消费者的注意力和参与度,那么相关的营销决策就可以依据客观数据来制定。尽管在自动情感识别方面已经取得了重大进展,但一些实际和理论问题在很大程度上仍未得到解决。这些问题包括缺乏跨系统验证、长期以来对摆拍表情而非自发表情的重视,以及关于主观体验与面部表情之间弱关联的更基本问题。为了解决这些局限性,本文认为现有的商业和免费面部表情分类器应在跨系统研究中进行严格验证。此外,学者和从业者必须更好地利用细粒度的情绪反应动态,更加强调理解自然发生的自发表情以及在自然主义的选择环境中。我们认为,应用消费者研究可能更适合在社会情感背景下研究面部行为,而不是在脱离背景的实验室研究中进行,并强调了如何在这种背景下成功应用AHAA。此外,面部活动不应再被视为单一的结果变量,而应更多地作为进一步分析的起点。在消费者研究的背景下讨论了这种方法的影响以及需要克服的潜在障碍。

相似文献

1
Opportunities and Challenges for Using Automatic Human Affect Analysis in Consumer Research.
Front Neurosci. 2020 Apr 28;14:400. doi: 10.3389/fnins.2020.00400. eCollection 2020.
2
Performance-driven facial animation: basic research on human judgments of emotional state in facial avatars.
Cyberpsychol Behav. 2001 Aug;4(4):471-87. doi: 10.1089/109493101750527033.
3
Detection of Genuine and Posed Facial Expressions of Emotion: Databases and Methods.
Front Psychol. 2021 Jan 15;11:580287. doi: 10.3389/fpsyg.2020.580287. eCollection 2020.
4
Student and educator experiences of maternal-child simulation-based learning: a systematic review of qualitative evidence protocol.
JBI Database System Rev Implement Rep. 2015 Jan;13(1):14-26. doi: 10.11124/jbisrir-2015-1694.
5
A Survey of Automatic Facial Micro-Expression Analysis: Databases, Methods, and Challenges.
Front Psychol. 2018 Jul 10;9:1128. doi: 10.3389/fpsyg.2018.01128. eCollection 2018.
6
When a new technological product launching fails: A multi-method approach of facial recognition and E-WOM sentiment analysis.
Physiol Behav. 2019 Mar 1;200:130-138. doi: 10.1016/j.physbeh.2018.04.023. Epub 2018 Apr 17.
7
The role of visual experience in the production of emotional facial expressions by blind people: a review.
Psychon Bull Rev. 2018 Apr;25(2):483-497. doi: 10.3758/s13423-017-1338-0.
8
Dynamics of facial expression: recognition of facial actions and their temporal segments from face profile image sequences.
IEEE Trans Syst Man Cybern B Cybern. 2006 Apr;36(2):433-49. doi: 10.1109/tsmcb.2005.859075.
9
A Review on Automatic Facial Expression Recognition Systems Assisted by Multimodal Sensor Data.
Sensors (Basel). 2019 Apr 18;19(8):1863. doi: 10.3390/s19081863.
10
Spontaneous and posed facial expression in Parkinson's disease.
J Int Neuropsychol Soc. 1996 Sep;2(5):383-91. doi: 10.1017/s1355617700001454.

引用本文的文献

2
Human and machine recognition of dynamic and static facial expressions: prototypicality, ambiguity, and complexity.
Front Psychol. 2023 Sep 12;14:1221081. doi: 10.3389/fpsyg.2023.1221081. eCollection 2023.
4
[Artificial intelligence and ethics in healthcare-balancing act or symbiosis?].
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2023 Feb;66(2):176-183. doi: 10.1007/s00103-022-03653-5. Epub 2023 Jan 17.
5
PDSTD - The Portsmouth Dynamic Spontaneous Tears Database.
Behav Res Methods. 2022 Dec;54(6):2678-2692. doi: 10.3758/s13428-021-01752-w. Epub 2021 Dec 16.
7
Human and machine validation of 14 databases of dynamic facial expressions.
Behav Res Methods. 2021 Apr;53(2):686-701. doi: 10.3758/s13428-020-01443-y.
8
A performance comparison of eight commercially available automatic classifiers for facial affect recognition.
PLoS One. 2020 Apr 24;15(4):e0231968. doi: 10.1371/journal.pone.0231968. eCollection 2020.

本文引用的文献

3
Editorial: Dynamic Emotional Communication.
Front Psychol. 2019 Dec 17;10:2836. doi: 10.3389/fpsyg.2019.02836. eCollection 2019.
4
Emotion recognition from posed and spontaneous dynamic expressions: Human observers versus machine analysis.
Emotion. 2021 Mar;21(2):447-451. doi: 10.1037/emo0000712. Epub 2019 Dec 12.
6
Emotional Expressions Reconsidered: Challenges to Inferring Emotion From Human Facial Movements.
Psychol Sci Public Interest. 2019 Jul;20(1):1-68. doi: 10.1177/1529100619832930.
7
Editorial: Recognizing Microexpression: An Interdisciplinary Perspective.
Front Psychol. 2019 Jun 4;10:1318. doi: 10.3389/fpsyg.2019.01318. eCollection 2019.
8
Facial Displays Are Tools for Social Influence.
Trends Cogn Sci. 2018 May;22(5):388-399. doi: 10.1016/j.tics.2018.02.006. Epub 2018 Mar 12.
9
Social Effects of Tears and Small Pupils Are Mediated by Felt Sadness: An Evolutionary View.
Evol Psychol. 2018 Jan-Mar;16(1):1474704918761104. doi: 10.1177/1474704918761104.
10
Facial Emotion Recognition: A Survey and Real-World User Experiences in Mixed Reality.
Sensors (Basel). 2018 Feb 1;18(2):416. doi: 10.3390/s18020416.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验