Suppr超能文献

使用卷积神经网络进行婴儿自动动作单元检测

Automatic Action Unit Detection in Infants Using Convolutional Neural Network.

作者信息

Hammal Zakia, Chu Wen-Sheng, Cohn Jeffrey F, Heike Carrie, Speltz Matthew L

机构信息

Robotics Institute, Carnegie Mellon University, Pittsburgh, USA.

Department of Psychology, University of Pittsburgh, Pittsburgh, USA.

出版信息

Int Conf Affect Comput Intell Interact Workshops. 2017 Oct;2017:216-221. doi: 10.1109/ACII.2017.8273603. Epub 2018 Feb 1.

Abstract

Action unit detection in infants relative to adults presents unique challenges. Jaw contour is less distinct, facial texture is reduced, and rapid and unusual facial movements are common. To detect facial action units in spontaneous behavior of infants, we propose a multi-label Convolutional Neural Network (CNN). Eighty-six infants were recorded during tasks intended to elicit enjoyment and frustration. Using an extension of FACS for infants (Baby FACS), over 230,000 frames were manually coded for ground truth. To control for chance agreement, inter-observer agreement between Baby-FACS coders was quantified using free-margin kappa. Kappa coefficients ranged from 0.79 to 0.93, which represents high agreement. The multi-label CNN achieved comparable agreement with manual coding. Kappa ranged from 0.69 to 0.93. Importantly, the CNN-based AU detection revealed the same change in findings with respect to infant expressiveness between tasks. While further research is needed, these findings suggest that automatic AU detection in infants is a viable alternative to manual coding of infant facial expression.

摘要

相对于成年人,婴儿的动作单元检测存在独特的挑战。婴儿的下颌轮廓不太明显,面部纹理减少,快速且异常的面部动作很常见。为了检测婴儿自发行为中的面部动作单元,我们提出了一种多标签卷积神经网络(CNN)。在旨在引发愉悦和沮丧情绪的任务中,对86名婴儿进行了记录。使用针对婴儿的FACS扩展版(婴儿FACS),超过230,000帧被手动编码作为真实数据。为了控制偶然一致性,使用自由边际kappa对婴儿FACS编码员之间的观察者间一致性进行了量化。kappa系数范围从0.79到0.93,这代表高度一致性。多标签CNN与手动编码达成了可比的一致性。kappa范围从0.69到0.93。重要的是,基于CNN的动作单元检测揭示了任务之间婴儿表现力方面相同的发现变化。虽然还需要进一步研究,但这些发现表明,婴儿动作单元的自动检测是婴儿面部表情手动编码的可行替代方法。

相似文献

1
Automatic Action Unit Detection in Infants Using Convolutional Neural Network.使用卷积神经网络进行婴儿自动动作单元检测
Int Conf Affect Comput Intell Interact Workshops. 2017 Oct;2017:216-221. doi: 10.1109/ACII.2017.8273603. Epub 2018 Feb 1.
2
Infant AFAR: Automated facial action recognition in infants.婴儿 AFAR:婴儿自动面部动作识别。
Behav Res Methods. 2023 Apr;55(3):1024-1035. doi: 10.3758/s13428-022-01863-y. Epub 2022 May 10.
9
Automatic Coding of Facial Expressions of Pain: Are We There Yet?自动编码疼痛的面部表情:我们做到了吗?
Pain Res Manag. 2022 Jan 11;2022:6635496. doi: 10.1155/2022/6635496. eCollection 2022.

引用本文的文献

4
Infant AFAR: Automated facial action recognition in infants.婴儿 AFAR:婴儿自动面部动作识别。
Behav Res Methods. 2023 Apr;55(3):1024-1035. doi: 10.3758/s13428-022-01863-y. Epub 2022 May 10.
6
Crossing Domains for AU Coding: Perspectives, Approaches, and Measures.用于情感单元编码的跨领域研究:观点、方法与措施
IEEE Trans Biom Behav Identity Sci. 2020 Apr;2(2):158-171. doi: 10.1109/tbiom.2020.2977225. Epub 2020 Mar 3.
8
Cross-domain AU Detection: Domains, Learning Approaches, and Measures.跨域情感单元检测:领域、学习方法与度量
Proc Int Conf Autom Face Gesture Recognit. 2019 May;2019. doi: 10.1109/FG.2019.8756543. Epub 2019 Jul 11.

本文引用的文献

1
Sayette Group Formation Task (GFT) Spontaneous Facial Expression Database.赛耶特集团组建任务(GFT)自发面部表情数据库。
Proc Int Conf Autom Face Gesture Recognit. 2017 May-Jun;2017:581-588. doi: 10.1109/FG.2017.144. Epub 2017 Jun 29.
2
Selective Transfer Machine for Personalized Facial Expression Analysis.用于个性化面部表情分析的选择性转移机器。
IEEE Trans Pattern Anal Mach Intell. 2017 Mar;39(3):529-545. doi: 10.1109/TPAMI.2016.2547397. Epub 2016 Mar 28.
3
Confidence Preserving Machine for Facial Action Unit Detection.用于面部动作单元检测的置信度保持机器
IEEE Trans Image Process. 2016 Oct;25(10):4753-4767. doi: 10.1109/TIP.2016.2594486. Epub 2016 Jul 27.
4
Joint Patch and Multi-label Learning for Facial Action Unit Detection.用于面部动作单元检测的联合补丁与多标签学习
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2015 Jun;2015:2207-2216. doi: 10.1109/CVPR.2015.7298833.
5
Dense 3D Face Alignment from 2D Videos in Real-Time.实时从二维视频中进行密集三维人脸对齐
IEEE Int Conf Autom Face Gesture Recognit Workshops. 2015 May;1. doi: 10.1109/FG.2015.7163142.
8
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
9
Recognizing Action Units for Facial Expression Analysis.用于面部表情分析的动作单元识别
IEEE Trans Pattern Anal Mach Intell. 2001 Feb;23(2):97-115. doi: 10.1109/34.908962.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验