Goertzel Benjamin N, Pennachin Cassio, de Souza Coelho Lucio, Maloney Elizabeth M, Jones James F, Gurbaxani Brian
Virginia Tech, National Capital Region, Arlington, Virginia, USA.
Pharmacogenomics. 2006 Apr;7(3):485-94. doi: 10.2217/14622416.7.3.485.
To further explore the relationship between chronic fatigue syndrome (CFS) and allostatic load (AL), we conducted a computational analysis involving 43 patients with CFS and 60 nonfatigued, healthy controls (NF) enrolled in a population-based case-control study in Wichita (KS, USA). We used traditional biostatistical methods to measure the association of high AL to standardized measures of physical and mental functioning, disability, fatigue and general symptom severity. We also used nonlinear regression technology embedded in machine learning algorithms to learn equations predicting various CFS symptoms based on the individual components of the allostatic load index (ALI).
An ALI was computed for all study participants using available laboratory and clinical data on metabolic, cardiovascular and hypothalamic-pituitary-adrenal (HPA) axis factors. Physical and mental functioning/impairment was measured using the Medical Outcomes Study 36-item Short Form Health Survey (SF-36); current fatigue was measured using the 20-item multidimensional fatigue inventory (MFI); frequency and intensity of symptoms was measured using the 19-item symptom inventory (SI). Genetic programming, a nonlinear regression technique, was used to learn an ensemble of different predictive equations rather just than a single one. Statistical analysis was based on the calculation of the percentage of equations in the ensemble that utilized each input variable, producing a measure of the 'utility' of the variable for the predictive problem at hand. Traditional biostatistics methods include the median and Wilcoxon tests for comparing the median levels of subscale scores obtained on the SF-36, the MFI and the SI summary score.
Among CFS patients, but not controls, a high level of AL was significantly associated with lower median values (indicating worse health) of bodily pain, physical functioning and general symptom frequency/intensity. Using genetic programming, the ALI was determined to be a better predictor of these three health measures than any subcombination of ALI components among cases, but not controls.
为了进一步探究慢性疲劳综合征(CFS)与应激负荷(AL)之间的关系,我们进行了一项计算分析,该分析纳入了美国堪萨斯州威奇托市一项基于人群的病例对照研究中的43例CFS患者和60例无疲劳症状的健康对照(NF)。我们使用传统生物统计学方法来测量高应激负荷与身体和心理功能、残疾、疲劳及一般症状严重程度的标准化测量指标之间的关联。我们还使用了机器学习算法中嵌入的非线性回归技术,基于应激负荷指数(ALI)的各个组成部分来学习预测各种CFS症状的方程。
利用关于代谢、心血管和下丘脑 - 垂体 - 肾上腺(HPA)轴因素的现有实验室和临床数据,为所有研究参与者计算应激负荷指数。使用医学结局研究36项简短健康调查(SF - 36)测量身体和心理功能/损伤情况;使用20项多维疲劳量表(MFI)测量当前疲劳程度;使用19项症状量表(SI)测量症状的频率和强度。遗传编程作为一种非线性回归技术,用于学习不同预测方程的集合而非单个方程。统计分析基于计算集合中利用每个输入变量的方程百分比,从而得出该变量对于手头预测问题的“效用”度量。传统生物统计学方法包括中位数检验和Wilcoxon检验,用于比较在SF - 36、MFI和SI总分量表上获得的子量表分数的中位数水平。
在CFS患者中,而非对照组中,高应激负荷与身体疼痛、身体功能以及一般症状频率/强度的较低中位数显著相关(表明健康状况较差)。使用遗传编程,在病例组中,ALI被确定为比ALI各组成部分的任何子组合都能更好地预测这三项健康指标,但在对照组中并非如此。