Gross Jeferson, Cho Won Kyong, Lezhneva Lina, Falk Jon, Krupinska Karin, Shinozaki Kazuo, Seki Motoaki, Herrmann Reinhold G, Meurer Jörg
Department Biology I, Botany, Ludwig-Maximilians-University Munich, Menzinger Strasse 67, D-80638 Munich, Germany.
Institute of Botany, University of Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
J Biol Chem. 2006 Jun 23;281(25):17189-17196. doi: 10.1074/jbc.M601754200. Epub 2006 Apr 15.
Phylloquinone is a compound present in all photosynthetic plants serving as cofactor for Photosystem I-mediated electron transport. Newly identified seedling-lethal Arabidopsis thaliana mutants impaired in the biosynthesis of phylloquinone possess reduced Photosystem I activity. The affected gene, called PHYLLO, consists of a fusion of four previously individual eubacterial genes, menF, menD, menC, and menH, required for the biosynthesis of phylloquinone in photosynthetic cyanobacteria and the respiratory menaquinone in eubacteria. The fact that homologous men genes reside as polycistronic units in eubacterial chromosomes and in plastomes of red algae strongly suggests that PHYLLO derived from a plastid operon during endosymbiosis. The principle architecture of the fused PHYLLO locus is conserved in the nuclear genomes of plants, green algae, and the diatom alga Thalassiosira pseudonana. The latter arose from secondary endosymbiosis of a red algae and a eukaryotic host indicating selective driving forces for maintenance and/or independent generation of the composite gene cluster within the nuclear genomes. Besides, individual menF genes, encoding active isochorismate synthases (ICS), have been established followed by splitting of the essential 3' region of the menF module of PHYLLO only in genomes of higher plants. This resulted in inactivation of the ICS activity encoded by PHYLLO and enabled a metabolic branch from the phylloquinone biosynthetic route to independently regulate the synthesis of salicylic acid required for plant defense. Therefore, gene fusion, duplication, and fission events adapted a eubacterial multienzymatic system to the metabolic requirements of plants.
叶绿醌是所有光合植物中存在的一种化合物,作为光系统I介导的电子传递的辅因子。新鉴定出的在叶绿醌生物合成中受损的拟南芥幼苗致死突变体,其光系统I活性降低。受影响的基因称为PHYLLO,由四个以前单独的真细菌基因menF、menD、menC和menH融合而成,这些基因是光合蓝细菌中叶绿醌生物合成以及真细菌中呼吸甲基萘醌生物合成所必需的。同源的men基因以多顺反子单元存在于真细菌染色体和红藻质体基因组中,这一事实强烈表明PHYLLO是在共生过程中从质体操纵子衍生而来的。融合的PHYLLO基因座的主要结构在植物、绿藻和硅藻假微型海链藻的核基因组中是保守的。后者起源于红藻和真核宿主的二次内共生,这表明在核基因组中维持和/或独立产生复合基因簇存在选择性驱动力。此外,仅在高等植物基因组中,已经确定了编码活性异分支酸合酶(ICS)的单个menF基因,随后PHYLLO的menF模块的必需3'区域发生了分裂。这导致PHYLLO编码的ICS活性失活,并使叶绿醌生物合成途径的一个代谢分支能够独立调节植物防御所需的水杨酸的合成。因此,基因融合、复制和裂变事件使真细菌多酶系统适应了植物的代谢需求。