Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany.
IRIS Adlershof, Humboldt Universität zu Berlin, Zum Grossen Windkanal 6, 12489, Berlin, Germany.
Angew Chem Int Ed Engl. 2021 Feb 19;60(8):3882-3904. doi: 10.1002/anie.202006457. Epub 2020 Oct 27.
The counterions neutralizing the charges on polyelectrolytes such as DNA or heparin may dissociate in water and greatly influence the interaction of such polyelectrolytes with biomolecules, particularly proteins. In this Review we give an overview of studies on the interaction of proteins with polyelectrolytes and how this knowledge can be used for medical applications. Counterion release was identified as the main driving force for the binding of proteins to polyelectrolytes: Patches of positive charge become multivalent counterions of the polyelectrolyte and lead to the release of counterions from the polyelectrolyte and a concomitant increase in entropy. This is shown from investigations on the interaction of proteins with natural and synthetic polyelectrolytes. Special emphasis is paid to sulfated dendritic polyglycerols (dPGS). The Review demonstrates that we are moving to a better understanding of charge-charge interactions in systems of biological relevance. Research along these lines will aid and promote the design of synthetic polyelectrolytes for medical applications.
带电荷的聚电解质(如 DNA 或肝素)所带电荷可被反离子中和,反离子在水中会离解,这会极大地影响聚电解质与生物分子(尤其是蛋白质)的相互作用。在这篇综述中,我们概述了蛋白质与聚电解质相互作用的研究,并介绍了如何将这些知识应用于医学领域。反离子的释放被认为是蛋白质与聚电解质结合的主要驱动力:带正电荷的区域成为聚电解质的多价反离子,导致聚电解质中反离子的释放以及熵的相应增加。这一点可以从蛋白质与天然和合成聚电解质的相互作用研究中得到证明。本文特别强调了硫酸化树枝状聚甘油(dPGS)。综述表明,我们对生物相关体系中电荷-电荷相互作用的理解正在不断深入。沿着这些思路进行的研究将有助于促进用于医学应用的合成聚电解质的设计。