Okada Toshihiro, Suzuki Hideyuki, Wada Kei, Kumagai Hidehiko, Fukuyama Keiichi
Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6471-6. doi: 10.1073/pnas.0511020103. Epub 2006 Apr 17.
Gamma-glutamyltranspeptidase (GGT) is a heterodimic enzyme that is generated from the precursor protein through posttranslational processing and catalyzes the hydrolysis of gamma-glutamyl bonds in gamma-glutamyl compounds such as glutathione and/or the transfer of the gamma-glutamyl group to other amino acids and peptides. We have determined the crystal structure of GGT from Escherichia coli K-12 at 1.95 A resolution. GGT has a stacked alphabetabetaalpha fold comprising the large and small subunits, similar to the folds seen in members of the N-terminal nucleophile hydrolase superfamily. The active site Thr-391, the N-terminal residue of the small subunit, is located in the groove, from which the pocket for gamma-glutamyl moiety binding follows. We have further determined the structure of the gamma-glutamyl-enzyme intermediate trapped by flash cooling the GGT crystal soaked in glutathione solution and the structure of GGT in complex with l-glutamate. These structures revealed how the gamma-glutamyl moiety and l-glutamate are recognized by the enzyme. A water molecule was seen on the carbonyl carbon of the gamma-glutamyl-Thr-391 Ogamma bond in the intermediate that is to be hydrolyzed. Notably the residues essential for GGT activity (Arg-114, Asp-433, Ser-462, and Ser-463 in E. coli GGT) shown by site-directed mutagenesis of human GGT are all involved in the binding of the gamma-glutamyl moiety. The structure of E. coli GGT presented here, together with sequence alignment of GGTs, may be applicable to interpret the biochemical and genetic data of other GGTs.
γ-谷氨酰转肽酶(GGT)是一种异二聚体酶,它通过翻译后加工从前体蛋白产生,并催化γ-谷氨酰化合物(如谷胱甘肽)中γ-谷氨酰键的水解和/或将γ-谷氨酰基转移到其他氨基酸和肽上。我们已经确定了来自大肠杆菌K-12的GGT在1.95 Å分辨率下的晶体结构。GGT具有由大亚基和小亚基组成的αβα堆叠折叠结构,类似于N-末端亲核水解酶超家族成员中的折叠结构。活性位点苏氨酸-391(小亚基的N-末端残基)位于凹槽中,γ-谷氨酰部分结合口袋由此延伸。我们进一步确定了通过快速冷却浸泡在谷胱甘肽溶液中的GGT晶体捕获的γ-谷氨酰酶中间体的结构以及与L-谷氨酸结合的GGT的结构。这些结构揭示了γ-谷氨酰部分和L-谷氨酸是如何被该酶识别的。在即将被水解的中间体中,γ-谷氨酰-苏氨酸-391的Oγ键的羰基碳上可见一个水分子。值得注意的是,通过人GGT的定点诱变显示的GGT活性所必需的残基(大肠杆菌GGT中的精氨酸-114、天冬氨酸-433、丝氨酸-462和丝氨酸-463)都参与了γ-谷氨酰部分的结合。这里展示的大肠杆菌GGT结构以及GGTs 的序列比对,可能适用于解释其他GGTs的生化和遗传数据。