Ghosh Sudakshina, Janocha Allison J, Aronica Mark A, Swaidani Shadi, Comhair Suzy A A, Xu Weiling, Zheng Lemin, Kaveti Suma, Kinter Michael, Hazen Stanley L, Erzurum Serpil C
Department of Pathobiology, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC22, Cleveland, OH 44195, USA.
J Immunol. 2006 May 1;176(9):5587-97. doi: 10.4049/jimmunol.176.9.5587.
Reactive oxygen species and reactive nitrogen species produced by epithelial and inflammatory cells are key mediators of the chronic airway inflammation of asthma. Detection of 3-nitrotyrosine in the asthmatic lung confirms the presence of increased reactive oxygen and nitrogen species, but the lack of identification of modified proteins has hindered an understanding of the potential mechanistic contributions of nitration/oxidation to airway inflammation. In this study, we applied a proteomic approach, using nitrotyrosine as a marker, to evaluate the oxidation of proteins in the allergen-induced murine model of asthma. Over 30 different proteins were targets of nitration following allergen challenge, including the antioxidant enzyme catalase. Oxidative modification and loss of catalase enzyme function were seen in this model. Subsequent investigation of human bronchoalveolar lavage fluid revealed that catalase activity was reduced in asthma by up to 50% relative to healthy controls. Analysis of catalase isolated from asthmatic airway epithelial cells revealed increased amounts of several protein oxidation markers, including chloro- and nitrotyrosine, linking oxidative modification to the reduced activity in vivo. Parallel in vitro studies using reactive chlorinating species revealed that catalase inactivation is accompanied by the oxidation of a specific cysteine (Cys(377)). Taken together, these studies provide evidence of multiple ongoing and profound oxidative reactions in asthmatic airways, with one early downstream consequence being catalase inactivation. Loss of catalase activity likely amplifies oxidative stress, contributing to the chronic inflammatory state of the asthmatic airway.
上皮细胞和炎症细胞产生的活性氧和活性氮是哮喘慢性气道炎症的关键介质。在哮喘患者的肺组织中检测到3-硝基酪氨酸,证实了活性氧和活性氮的增加,但由于未鉴定出被修饰的蛋白质,阻碍了我们对硝化/氧化作用于气道炎症的潜在机制的理解。在本研究中,我们采用蛋白质组学方法,以硝基酪氨酸为标志物,评估变应原诱导的哮喘小鼠模型中蛋白质的氧化情况。变应原激发后,超过30种不同的蛋白质成为硝化作用的靶点,其中包括抗氧化酶过氧化氢酶。在该模型中观察到了过氧化氢酶的氧化修饰和酶功能丧失。随后对人支气管肺泡灌洗液的研究表明,与健康对照相比,哮喘患者的过氧化氢酶活性降低了50%。对从哮喘气道上皮细胞中分离出的过氧化氢酶进行分析,发现包括氯酪氨酸和硝基酪氨酸在内的几种蛋白质氧化标志物的含量增加,这表明氧化修饰与体内活性降低有关。使用活性氯物质进行的平行体外研究表明,过氧化氢酶失活伴随着特定半胱氨酸(Cys(377))的氧化。综上所述,这些研究提供了证据,证明哮喘气道中存在多种持续且深刻的氧化反应,其中一个早期下游结果是过氧化氢酶失活。过氧化氢酶活性的丧失可能会放大氧化应激,导致哮喘气道的慢性炎症状态。