Suppr超能文献

基于模糊聚类的脊柱畸形三维分类

Three-dimensional classification of spinal deformities using fuzzy clustering.

作者信息

Duong Luc, Cheriet Farida, Labelle Hubert

机构信息

Research Center, Sainte-Justine Hospital, Montreal, Quebec, Canada.

出版信息

Spine (Phila Pa 1976). 2006 Apr 15;31(8):923-30. doi: 10.1097/01.brs.0000209312.62384.c1.

Abstract

STUDY DESIGN

A prospective study of a large set of three-dimensional (3D) reconstructions of spinal deformities in adolescent idiopathic scoliosis (AIS).

OBJECTIVES

To determine the value of fuzzy clustering techniques to automatically detect clinically relevant 3D curve patterns within this set of 3D spine models.

SUMMARY OF BACKGROUND DATA

Classification is important for the assessment of AIS and has been mainly used to guide surgical treatment. Current classification systems are based on visual curve pattern identification using two-dimensional radiologic measurements but remain controversial because of their low interobserver and intraobserver reliability. A clinically useful 3D classification remains to be found.

METHODS

An unsupervised learning algorithm, fuzzy k-means clustering, was applied on 409 3D spine models. Analysis of data distribution using clinical parameters was performed by studying similar curve patterns, near each cluster center identified.

RESULTS

The algorithm determined that the entire sample of models could be segmented in five easily differentiated curve patterns similar to those of the Lenke and King classifications. Furthermore, a system with 12 classes made possible the identification of subpatterns of spinal deformity with true 3D components.

CONCLUSIONS

Automatic and clinically relevant 3D classification of AIS is possible using an unsupervised learning algorithm. This approach can now be used to build a relevant 3D classification of AIS using appropriate key features of 3D models selected by a panel of expert spinal deformity surgeons.

摘要

研究设计

一项对青少年特发性脊柱侧凸(AIS)脊柱畸形的大量三维(3D)重建进行的前瞻性研究。

目的

确定模糊聚类技术在这组3D脊柱模型中自动检测临床相关3D曲线模式的价值。

背景数据总结

分类对于AIS的评估很重要,主要用于指导手术治疗。目前的分类系统基于使用二维放射学测量的视觉曲线模式识别,但由于其观察者间和观察者内可靠性较低,仍存在争议。临床上有用的3D分类仍有待发现。

方法

将无监督学习算法模糊k均值聚类应用于409个3D脊柱模型。通过研究在每个识别出的聚类中心附近的相似曲线模式,使用临床参数进行数据分布分析。

结果

该算法确定,整个模型样本可以被分割为五种易于区分的曲线模式,类似于Lenke和King分类。此外,一个有12类的系统使得识别具有真正3D成分的脊柱畸形子模式成为可能。

结论

使用无监督学习算法对AIS进行自动且临床相关的3D分类是可能的。现在可以使用这种方法,通过由一组脊柱畸形专家外科医生选择的3D模型的适当关键特征,来构建AIS的相关3D分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验