Suppr超能文献

一种用于高质量势拟合的与分子无关的嵌套神经网络方法。

A nested molecule-independent neural network approach for high-quality potential fits.

作者信息

Manzhos Sergei, Wang Xiaogang, Dawes Richard, Carrington Tucker

机构信息

Département de chimie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal (Québec) H3C 3J7, Canada.

出版信息

J Phys Chem A. 2006 Apr 27;110(16):5295-304. doi: 10.1021/jp055253z.

Abstract

It is shown that neural networks (NNs) are efficient and effective tools for fitting potential energy surfaces. For H2O, a simple NN approach works very well. To fit surfaces for HOOH and H2CO, we develop a nested neural network technique in which we first fit an approximate NN potential and then use another NN to fit the difference of the true potential and the approximate potential. The root-mean-square error (RMSE) of the H2O surface is 1 cm(-1). For the 6-D HOOH and H2CO surfaces, the nested approach does almost as well attaining a RMSE of 2 cm(-1). The quality of the NN surfaces is verified by calculating vibrational spectra. For all three molecules, most of the low-lying levels are within 1 cm(-1) of the exact results. On the basis of these results, we propose that the nested NN approach be considered a method of choice for both simple potentials, for which it is relatively easy to guess a good fitting function, and complicated (e.g., double well) potentials for which it is much harder to deduce an appropriate fitting function. The number of fitting parameters is only moderately larger for the 6-D than for the 3-D potentials, and for all three molecules, decreasing the desired RMSE increases only slightly the number of required fitting parameters (nodes). NN methods, and in particular the nested approach we propose, should be good universal potential fitting tools.

摘要

结果表明,神经网络(NNs)是拟合势能面的高效工具。对于H2O,一种简单的神经网络方法效果很好。为了拟合HOOH和H2CO的势能面,我们开发了一种嵌套神经网络技术,即首先拟合一个近似的神经网络势能,然后使用另一个神经网络来拟合真实势能与近似势能的差值。H2O势能面的均方根误差(RMSE)为1 cm(-1)。对于6维的HOOH和H2CO势能面,嵌套方法的效果几乎相同,RMSE达到2 cm(-1)。通过计算振动光谱验证了神经网络势能面的质量。对于所有这三种分子,大多数低能级与精确结果的偏差在1 cm(-1)以内。基于这些结果,我们建议嵌套神经网络方法应被视为一种首选方法,适用于两种情况:对于简单势能,相对容易猜测一个好的拟合函数;对于复杂(如双阱)势能,很难推导出合适的拟合函数。6维势能的拟合参数数量仅比3维势能适度多一些,并且对于所有这三种分子,降低所需的RMSE只会略微增加所需拟合参数(节点)的数量。神经网络方法,特别是我们提出的嵌套方法,应该是很好的通用势能拟合工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验