Sun Xiaojian, Shih Andy Y, Johannssen Helge C, Erb Heidi, Li Ping, Murphy Timothy H
Departments of Psychiatry, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.
Departments of Psychiatry, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada; Departments of Physiology, Kinsmen Laboratory of Neurological Research and Brain Research Centre, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.
J Biol Chem. 2006 Jun 23;281(25):17420-17431. doi: 10.1074/jbc.M601567200. Epub 2006 Apr 19.
Glutathione is the major cellular thiol present in mammalian cells and is critical for maintenance of redox homeostasis. However, current assay systems for glutathione lack application to intact animal tissues. To map the levels of glutathione in intact brain with cellular resolution (acute tissue slices and live animals), we have used two-photon imaging of monochlorobimane fluorescence, a selective enzyme-mediated marker for reduced glutathione. Previously, in vitro experiments using purified components and cultured glial cells attributed cellular monochlorobimane fluorescence to a glutathione S-transferase-dependent reaction with GSH. Our results indicate that cells at the cerebrospinal fluid or blood-brain interface, such as lateral ventricle ependymal cells (2.73 +/- 0.56 mm; glutathione), meningeal cells (1.45 +/- 0.09 mm), and astroglia (0.91 +/- 0.08 mm), contain high levels of glutathione. In comparison, layer II cortical neurons contained 20% (0.21 +/- 0.02 mm) the glutathione content of nearby astrocytes. Neuronal glutathione labeling increased 250% by the addition of the cell-permeable glutathione precursor N-acetylcysteine indicating that the monochlorobimane level or glutathione S-transferase activity within neurons was not limiting. Regional mapping showed that glutathione was highest in cells lining the lateral ventricles, specifically ependymal cells and the subventricular zone, suggesting a possible function for glutathione in oxidant homeostasis of developing neuronal progenitors. Consistently, developing neurons in the subgranular zone of dentate gyrus contained 3-fold more glutathione than older neurons found in the neighboring granular layer. In conclusion, mapping of glutathione levels in intact brain demonstrates a unique role for enhanced redox potential in developing neurons and cells at the cerebrospinal fluid and blood-brain interface.
谷胱甘肽是哺乳动物细胞中主要的细胞硫醇,对维持氧化还原稳态至关重要。然而,目前用于谷胱甘肽的检测系统无法应用于完整的动物组织。为了以细胞分辨率(急性组织切片和活体动物)绘制完整大脑中谷胱甘肽的水平,我们使用了单氯双硫腙荧光的双光子成像技术,这是一种用于还原型谷胱甘肽的选择性酶介导标记物。此前,使用纯化成分和培养的神经胶质细胞进行的体外实验将细胞单氯双硫腙荧光归因于谷胱甘肽 S-转移酶与谷胱甘肽的依赖性反应。我们的结果表明,脑脊液或血脑界面处的细胞,如侧脑室室管膜细胞(2.73±0.56毫米;谷胱甘肽)、脑膜细胞(1.45±0.09毫米)和星形胶质细胞(0.91±0.08毫米),含有高水平的谷胱甘肽。相比之下,II层皮质神经元的谷胱甘肽含量仅为附近星形胶质细胞的20%(0.21±0.02毫米)。通过添加细胞可渗透的谷胱甘肽前体N-乙酰半胱氨酸,神经元谷胱甘肽标记增加了250%,这表明神经元内的单氯双硫腙水平或谷胱甘肽S-转移酶活性不受限制。区域图谱显示,侧脑室衬里细胞中的谷胱甘肽含量最高,特别是室管膜细胞和室下区,这表明谷胱甘肽在发育中的神经元祖细胞的氧化还原稳态中可能具有作用。一致的是,齿状回颗粒下区发育中的神经元所含谷胱甘肽比相邻颗粒层中较成熟的神经元多3倍。总之,完整大脑中谷胱甘肽水平的图谱显示,增强的氧化还原电位在发育中的神经元以及脑脊液和血脑界面处的细胞中具有独特作用。