Ackert Jessica M, Wu Synphen H, Lee Jacob C, Abrams Joseph, Hu Edward H, Perlman Ido, Bloomfield Stewart A
Department of Ophthalmology, New York University School of Medicine, New York, New York 10016, USA.
J Neurosci. 2006 Apr 19;26(16):4206-15. doi: 10.1523/JNEUROSCI.0496-06.2006.
Although electrical coupling via gap junctions is prevalent among ganglion cells in the vertebrate retina, there have been few direct studies of their influence on the light-evoked signaling of these cells. Here, we describe the pattern and function of coupling between the ON direction selective (DS) ganglion cells, a unique subtype whose signals are transmitted to the accessory optic system (AOS) where they initiate the optokinetic response. ON DS cells are coupled indirectly via gap junctions made with a subtype of polyaxonal amacrine cell. This coupling underlies synchronization of the spontaneous and light-evoked spike activity of neighboring ON DS cells. However, we find that ON DS cell pairs show robust synchrony for all directions of stimulus movement, except for the null direction. Null stimulus movement evokes a GABAergic inhibition that temporally shifts firing of ON DS cell neighbors, resulting in a desynchronization of spike activity. Thus, detection of null stimulus movement appears key to the direction selectivity of ON DS cells, evoking both an attenuation of spike frequency and a desynchronization of neighbors. We posit that active desynchronization reduces summation of synaptic potentials at target AOS cells and thus provides a secondary mechanism by which ON DS cell ensembles can signal direction of stimulus motion to the brain.
尽管通过缝隙连接的电耦合在脊椎动物视网膜的神经节细胞中普遍存在,但很少有直接研究其对这些细胞光诱发信号传导的影响。在这里,我们描述了ON方向选择性(DS)神经节细胞之间耦合的模式和功能,ON DS细胞是一种独特的亚型,其信号被传递到附属视觉系统(AOS),在那里引发视动反应。ON DS细胞通过与多轴突无长突细胞的一个亚型形成的缝隙连接间接耦合。这种耦合是相邻ON DS细胞自发和光诱发尖峰活动同步的基础。然而,我们发现,除了零方向外,ON DS细胞对在所有刺激运动方向上都表现出强大的同步性。零刺激运动引发一种GABA能抑制,暂时改变ON DS细胞邻居的放电时间,导致尖峰活动去同步化。因此,检测零刺激运动似乎是ON DS细胞方向选择性的关键,它既引起尖峰频率衰减,又导致邻居去同步化。我们认为,主动去同步化减少了靶AOS细胞处突触电位的总和,从而提供了一种次要机制,通过该机制ON DS细胞群体可以向大脑发出刺激运动方向的信号。