Suppr超能文献

利用表面增强激光解吸/电离飞行时间质谱法检测唾液中假定的乳腺癌标志物:一项可行性研究。

The use of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry to detect putative breast cancer markers in saliva: a feasibility study.

作者信息

Streckfus Charles F, Bigler Lenora R, Zwick Michael

机构信息

University of Texas at Houston Health Science Center Dental Branch, Houston, TX 77030, USA.

出版信息

J Oral Pathol Med. 2006 May;35(5):292-300. doi: 10.1111/j.1600-0714.2006.00427.x.

Abstract

BACKGROUND

Technologies are now available enabling saliva to be used to diagnose disease, predict disease progression, and monitor therapeutic efficacy. This pilot study describes the use of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI) to detect putative breast cancer markers in saliva.

METHODS

Salivary specimens were analyzed as either pooled cancer saliva specimens, or individual specimens from healthy women and women diagnosed with carcinoma of the breast. The specimens were applied to a variety of protein chip arrays, washed extensively to remove unbound analytes and analyzed on a SELDI mass spectrometer.

RESULTS

The results of this initial study suggest that the WCX protein chip array prepared and washed at pH 3.5 yielded the most promising results. Additionally, the analyses revealed a number of proteins that were higher in intensity among the cancer subjects when compared with controls. These salivary proteins were present at the 18, 113, 170, 228 and 287 km/z ranges using SELDI analyses.

CONCLUSIONS

The study suggests that saliva may be useful for high-throughput biomarker discovery.

摘要

背景

现有技术可使唾液用于疾病诊断、预测疾病进展及监测治疗效果。这项初步研究描述了使用表面增强激光解吸/电离飞行时间质谱(SELDI)检测唾液中假定的乳腺癌标志物。

方法

唾液标本被分析为合并的癌症唾液标本,或来自健康女性及被诊断为乳腺癌女性的个体标本。将标本应用于各种蛋白质芯片阵列,充分洗涤以去除未结合的分析物,并在SELDI质谱仪上进行分析。

结果

这项初步研究的结果表明,在pH 3.5条件下制备和洗涤的WCX蛋白质芯片阵列产生了最有前景的结果。此外,分析显示与对照组相比,癌症受试者中有多种蛋白质强度更高。使用SELDI分析,这些唾液蛋白出现在18、113、170、228和287 kDa/z范围内。

结论

该研究表明唾液可能有助于高通量生物标志物的发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验