Suppr超能文献

结构同源蛋白质的天然柔韧性:来自各向异性网络模型的见解

Native flexibility of structurally homologous proteins: insights from anisotropic network model.

作者信息

Sarkar Ranja

机构信息

School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India.

出版信息

BMC Biophys. 2017 Jan 31;10:1. doi: 10.1186/s13628-017-0034-9. eCollection 2017.

Abstract

BACKGROUND

Single-molecule microscopic experiments can measure the mechanical response of proteins to pulling forces applied externally along different directions (inducing different residue pairs in the proteins by uniaxial tension). This response to external forces away from equilibrium should in principle, correlate with the flexibility or stiffness of proteins in their folded states. Here, a simple topology-based atomistic anisotropic network model (ANM) is shown which captures the protein flexibility as a fundamental property that determines the collective dynamics and hence, the protein conformations in native state.

METHODS

An all-atom ANM is used to define two measures of protein flexibility in the native state. One measure quantifies overall stiffness of the protein and the other one quantifies protein stiffness along a particular direction which is effectively the mechanical resistance of the protein towards external pulling force exerted along that direction. These measures are sensitive to the protein sequence and yields reliable values through computations of normal modes of the protein.

RESULTS

ANM at an atomistic level (heavy atoms) explains the experimental (atomic force microscopy) observations viz., different mechanical stability of structurally similar but sequentially distinct proteins which, otherwise were implied to possess similar mechanical properties from analytical/theoretical coarse-grained (backbone only) models. The results are exclusively demonstrated for human fibronectin (FN) protein domains.

CONCLUSIONS

The topology of interatomic contacts in the folded states of proteins essentially determines the native flexibility. The mechanical differences of topologically similar proteins are captured from a high-resolution (atomic level) ANM at a low computational cost. The relative trend in flexibility of such proteins is reflected in their stability differences that they exhibit while unfolding in atomic force microscopic (AFM) experiments.

摘要

背景

单分子显微镜实验能够测量蛋白质对沿不同方向施加的外力(通过单轴拉伸在蛋白质中诱导不同的残基对)的机械响应。这种对远离平衡的外力的响应原则上应与蛋白质折叠状态下的柔韧性或刚性相关。在此,展示了一种基于简单拓扑结构的原子各向异性网络模型(ANM),该模型将蛋白质柔韧性作为一种基本属性来捕捉,这种属性决定了集体动力学,进而决定了天然状态下的蛋白质构象。

方法

使用全原子ANM来定义天然状态下蛋白质柔韧性的两种度量。一种度量量化蛋白质的整体刚性,另一种度量量化蛋白质沿特定方向的刚性,该方向实际上是蛋白质对沿该方向施加的外部拉力的机械阻力。这些度量对蛋白质序列敏感,并通过计算蛋白质的正常模式产生可靠的值。

结果

原子水平(重原子)的ANM解释了实验(原子力显微镜)观察结果,即结构相似但序列不同的蛋白质具有不同的机械稳定性,否则从分析/理论粗粒度(仅主链)模型来看,它们被认为具有相似的机械性能。结果专门针对人纤连蛋白(FN)蛋白结构域进行了展示。

结论

蛋白质折叠状态下原子间接触的拓扑结构本质上决定了天然柔韧性。拓扑相似蛋白质的机械差异可通过高分辨率(原子水平)的ANM以低计算成本捕捉到。此类蛋白质柔韧性的相对趋势反映在它们在原子力显微镜(AFM)实验中展开时所表现出的稳定性差异上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bf1/5282881/947db80ce36e/13628_2017_34_Fig1_HTML.jpg

相似文献

1
Native flexibility of structurally homologous proteins: insights from anisotropic network model.
BMC Biophys. 2017 Jan 31;10:1. doi: 10.1186/s13628-017-0034-9. eCollection 2017.
2
Toward a molecular understanding of the anisotropic response of proteins to external forces: insights from elastic network models.
Biophys J. 2008 May 1;94(9):3424-35. doi: 10.1529/biophysj.107.120733. Epub 2008 Jan 25.
3
Estimating the Directional Flexibility of Proteins from Equilibrium Thermal Fluctuations.
J Chem Theory Comput. 2021 May 11;17(5):3103-3118. doi: 10.1021/acs.jctc.0c01070. Epub 2021 Apr 5.
4
Stiffening of flexible SUMO1 protein upon peptide-binding: Analysis with anisotropic network model.
Math Biosci. 2018 Jan;295:67-72. doi: 10.1016/j.mbs.2017.11.008. Epub 2017 Nov 16.
6
Generalized spring tensor models for protein fluctuation dynamics and conformation changes.
Adv Exp Med Biol. 2014;805:107-35. doi: 10.1007/978-3-319-02970-2_5.
9
Mechanical resistance of proteins explained using simple molecular models.
Biophys J. 2006 Jan 1;90(1):287-97. doi: 10.1529/biophysj.105.071035. Epub 2005 Oct 7.
10
Protein mechanics probed using simple molecular models.
Biochim Biophys Acta Gen Subj. 2020 Aug;1864(8):129613. doi: 10.1016/j.bbagen.2020.129613. Epub 2020 Apr 13.

本文引用的文献

1
ProDy: protein dynamics inferred from theory and experiments.
Bioinformatics. 2011 Jun 1;27(11):1575-7. doi: 10.1093/bioinformatics/btr168. Epub 2011 Apr 5.
2
Toward a molecular understanding of the anisotropic response of proteins to external forces: insights from elastic network models.
Biophys J. 2008 May 1;94(9):3424-35. doi: 10.1529/biophysj.107.120733. Epub 2008 Jan 25.
4
Single-molecule experiments in vitro and in silico.
Science. 2007 May 25;316(5828):1144-8. doi: 10.1126/science.1137591.
6
Anisotropic deformation response of single protein molecules.
Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12724-8. doi: 10.1073/pnas.0602995103. Epub 2006 Aug 14.
7
Mechanism of titin unfolding by force: insight from quasi-equilibrium molecular dynamics calculations.
Biophys J. 2006 Jul 15;91(2):467-72. doi: 10.1529/biophysj.106.082594. Epub 2006 Apr 21.
8
Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations.
Biophys J. 2005 Feb;88(2):790-804. doi: 10.1529/biophysj.104.052423. Epub 2004 Nov 5.
10
Atomic force microscopy: mechanical unfolding of proteins.
Methods. 2004 Sep;34(1):100-11. doi: 10.1016/j.ymeth.2004.03.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验