Gill Patrick, Zhang Junli, Woolley Sarah M N, Fremouw Thane, Theunissen Frédéric E
Biophysics Group, University of California at Berkeley, 3210, Tolman Hall, Berkeley, CA, 94720, USA.
J Comput Neurosci. 2006 Aug;21(1):5-20. doi: 10.1007/s10827-006-7059-4. Epub 2006 Apr 22.
The spectro-temporal receptive field (STRF) of an auditory neuron describes the linear relationship between the sound stimulus in a time-frequency representation and the neural response. Time-frequency representations of a sound in turn require a nonlinear operation on the sound pressure waveform and many different forms for this non-linear transformation are possible. Here, we systematically investigated the effects of four factors in the non-linear step in the STRF model: the choice of logarithmic or linear filter frequency spacing, the time-frequency scale, stimulus amplitude compression and adaptive gain control. We quantified the goodness of fit of these different STRF models on data obtained from auditory neurons in the songbird midbrain and forebrain. We found that adaptive gain control and the correct stimulus amplitude compression scheme are paramount to correctly modelling neurons. The time-frequency scale and frequency spacing also affected the goodness of fit of the model but to a lesser extent and the optimal values were stimulus dependent.
听觉神经元的频谱-时间感受野(STRF)描述了时频表示中的声音刺激与神经反应之间的线性关系。声音的时频表示反过来需要对声压波形进行非线性操作,并且这种非线性变换有许多不同形式。在此,我们系统地研究了STRF模型中非线性步骤的四个因素的影响:对数或线性滤波器频率间距的选择、时频尺度、刺激幅度压缩和自适应增益控制。我们量化了这些不同STRF模型对从鸣禽中脑和前脑听觉神经元获得的数据的拟合优度。我们发现自适应增益控制和正确的刺激幅度压缩方案对于正确模拟神经元至关重要。时频尺度和频率间距也影响模型的拟合优度,但程度较小,并且最佳值取决于刺激。