Suppr超能文献

急性冠状动脉综合征患者初始分诊的决策支持

Decision support for the initial triage of patients with acute coronary syndromes.

作者信息

Olsson Sven-Erik, Ohlsson Mattias, Ohlin Hans, Dzaferagic Samir, Nilsson Marie-Louise, Sandkull Per, Edenbrandt Lars

机构信息

Department of Cardiology, Lund University, Lund, Sweden.

出版信息

Clin Physiol Funct Imaging. 2006 May;26(3):151-6. doi: 10.1111/j.1475-097X.2006.00669.x.

Abstract

Early revascularization of acute coronary syndromes improves the prognosis. It is of vital importance that the decision to treat the patient is taken as early as possible. The aim of this study was (i) to develop an automated tool for the analysis of electrocardiograms (ECGs) with regard to changes that indicate possible transmural ischaemia and (ii) to assess the influence of the tool on the ECG classifications of three interns with less than 12 months of experience in ECG reading. An artificial neural network was trained to automatically interpret ECGs using 3000 ECGs recorded at an emergency department. Thereafter, the performance of the network was evaluated using 1000 test ECGs. In the second step, three interns classified these test ECGs twice on different occasions, with and without the advice of the neural network. The gold standard was the classification made by two experienced cardiologists. On average, the three interns showed a sensitivity of 68% at a specificity of 92% without the advice of the neural network and a sensitivity of 93% at a specificity of 87% with the advice. The neural network itself showed a sensitivity of 95% at a specificity of 88%. The increase in sensitivity of 23-26% was significant (P<0.001) for all three interns. In conclusion, an artificial neural network can be trained to the improve performance in the interpretation of ST-segment changes in accordance with that of the experienced cardiologists.

摘要

急性冠状动脉综合征的早期血运重建可改善预后。尽早做出治疗患者的决定至关重要。本研究的目的是:(i)开发一种自动工具,用于分析心电图(ECG)中表明可能存在透壁性缺血的变化;(ii)评估该工具对三名心电图阅读经验少于12个月的实习医生心电图分类的影响。使用在急诊科记录的3000份心电图训练人工神经网络以自动解读心电图。此后,使用1000份测试心电图评估该网络的性能。在第二步中,三名实习医生在不同场合对这些测试心电图进行了两次分类,一次没有神经网络的建议,一次有神经网络的建议。金标准是由两名经验丰富的心脏病专家做出的分类。平均而言,三名实习医生在没有神经网络建议时,灵敏度为68%,特异度为92%;在有建议时,灵敏度为93%,特异度为87%。神经网络本身的灵敏度为95%,特异度为88%。对于所有三名实习医生来说,灵敏度提高23% - 26%具有显著意义(P<0.001)。总之,可以训练人工神经网络,以根据经验丰富的心脏病专家的表现提高对ST段变化的解读性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验