Suppr超能文献

具有复合特征的循环神经网络用于检测部分癫痫患者的心电图变化

Recurrent neural networks with composite features for detection of electrocardiographic changes in partial epileptic patients.

作者信息

Ubeyli Elif Derya

机构信息

Department of Electrical and Electronics Engineering, Faculty of Engineering, TOBB Ekonomi ve Teknoloji Universitesi, 06530 Söğütözü, Ankara, Turkey.

出版信息

Comput Biol Med. 2008 Mar;38(3):401-10. doi: 10.1016/j.compbiomed.2008.01.002. Epub 2008 Feb 14.

Abstract

The aim of this study is to evaluate the diagnostic accuracy of the recurrent neural networks (RNNs) with composite features (wavelet coefficients and Lyapunov exponents) on the electrocardiogram (ECG) signals. Two types of ECG beats (normal and partial epilepsy) were obtained from the MIT-BIH database. The multilayer perceptron neural networks (MLPNNs) were also tested and benchmarked for their performance on the classification of the ECG signals. Decision making was performed in two stages: computing composite features which were then input into the classifiers and classification using the classifiers trained with the Levenberg-Marquardt algorithm. The research demonstrated that the wavelet coefficients and the Lyapunov exponents are the features which well represent the ECG signals and the RNN trained on these features achieved high classification accuracies.

摘要

本研究的目的是评估具有复合特征(小波系数和李雅普诺夫指数)的递归神经网络(RNN)对心电图(ECG)信号的诊断准确性。从麻省理工学院 - 贝斯以色列女执事医疗中心(MIT - BIH)数据库中获取了两种类型的心电图搏动(正常和部分癫痫)。还对多层感知器神经网络(MLPNN)在心电图信号分类方面的性能进行了测试和基准评估。决策分两个阶段进行:计算复合特征,然后将其输入到分类器中,并使用通过列文伯格 - 马夸特算法训练的分类器进行分类。研究表明,小波系数和李雅普诺夫指数是很好地表示心电图信号的特征,基于这些特征训练的RNN实现了高分类准确率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验