Suppr超能文献

体内磁共振成像和半自动图像分析扩展了cdf/cdf小鼠的脑表型。

In vivo magnetic resonance imaging and semiautomated image analysis extend the brain phenotype for cdf/cdf mice.

作者信息

Bock Nicholas A, Kovacevic Natasa, Lipina Tatiana V, Roder John C, Ackerman Susan L, Henkelman R Mark

机构信息

Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.

出版信息

J Neurosci. 2006 Apr 26;26(17):4455-9. doi: 10.1523/JNEUROSCI.5438-05.2006.

Abstract

Magnetic resonance imaging and computer image analysis in human clinical studies effectively identify abnormal neuroanatomy in disease populations. As more mouse models of neurological disorders are discovered, such an approach may prove useful for translational studies. Here, we demonstrate the effectiveness of a similar strategy for mouse neuroscience studies by phenotyping mice with the cerebellar deficient folia (cdf) mutation. Using in vivo multiple-mouse magnetic resonance imaging for increased throughput, we imaged groups of cdf mutant, heterozygous, and wild-type mice and made an atlas-based segmentation of the structures in 15 individual brains. We then performed computer automated volume measurements on the structures. We found a reduced cerebellar volume in the cdf mutants, which was expected, but we also found a new phenotype in the inferior colliculus and the olfactory bulbs. Subsequent local histology revealed additional cytoarchitectural abnormalities in the olfactory bulbs. This demonstrates the utility of anatomical magnetic resonance imaging and semiautomated image analysis for detecting abnormal neuroarchitecture in mutant mice.

摘要

磁共振成像和计算机图像分析在人体临床研究中能有效识别疾病人群中的异常神经解剖结构。随着越来越多的神经疾病小鼠模型被发现,这种方法可能对转化研究有用。在此,我们通过对患有小脑叶缺损(cdf)突变的小鼠进行表型分析,证明了类似策略在小鼠神经科学研究中的有效性。利用体内多小鼠磁共振成像提高通量,我们对cdf突变体、杂合子和野生型小鼠组进行了成像,并对15个个体大脑中的结构进行了基于图谱的分割。然后我们对这些结构进行了计算机自动体积测量。我们发现cdf突变体的小脑体积减小,这在意料之中,但我们还在下丘和嗅球中发现了一种新的表型。随后的局部组织学检查显示嗅球中存在额外的细胞结构异常。这证明了解剖磁共振成像和半自动图像分析在检测突变小鼠异常神经结构方面的实用性。

相似文献

1
In vivo magnetic resonance imaging and semiautomated image analysis extend the brain phenotype for cdf/cdf mice.
J Neurosci. 2006 Apr 26;26(17):4455-9. doi: 10.1523/JNEUROSCI.5438-05.2006.
2
Manganese-enhanced magnetic resonance imaging (MEMRI) of mouse brain development.
NMR Biomed. 2004 Dec;17(8):613-9. doi: 10.1002/nbm.932.
8
Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping.
Neuroimage. 2011 Jan 15;54(2):769-78. doi: 10.1016/j.neuroimage.2010.07.039. Epub 2010 Jul 23.
9
Morphometric analysis of the C57BL/6J mouse brain.
Neuroimage. 2007 Sep 1;37(3):683-93. doi: 10.1016/j.neuroimage.2007.05.046. Epub 2007 Jun 7.
10
Cerebellar deficient folia (cdf): a new mutation on mouse chromosome 6.
Mamm Genome. 1997 Feb;8(2):108-12. doi: 10.1007/s003359900368.

引用本文的文献

1
Development and advancements in rodent MRI-based brain atlases.
Heliyon. 2024 Mar 8;10(6):e27421. doi: 10.1016/j.heliyon.2024.e27421. eCollection 2024 Mar 30.
2
Towards reliable reconstruction of the mouse brain corticothalamic connectivity using diffusion MRI.
Neuroimage. 2023 Jun;273:120111. doi: 10.1016/j.neuroimage.2023.120111. Epub 2023 Apr 13.
3
Constructing the rodent stereotaxic brain atlas: a survey.
Sci China Life Sci. 2022 Jan;65(1):93-106. doi: 10.1007/s11427-020-1911-9. Epub 2021 Apr 13.
4
The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas.
Cell. 2020 May 14;181(4):936-953.e20. doi: 10.1016/j.cell.2020.04.007. Epub 2020 May 7.
5
Characterization of Brain Metabolism by Nuclear Magnetic Resonance.
Chemphyschem. 2019 Jan 21;20(2):216-230. doi: 10.1002/cphc.201800917. Epub 2018 Dec 20.
6
Evaluation of temperature induction in focal ischemic thermocoagulation model.
PLoS One. 2018 Jul 5;13(7):e0200135. doi: 10.1371/journal.pone.0200135. eCollection 2018.
7
Germline Chd8 haploinsufficiency alters brain development in mouse.
Nat Neurosci. 2017 Aug;20(8):1062-1073. doi: 10.1038/nn.4592. Epub 2017 Jun 26.
8
Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain.
Biomed Opt Express. 2015 Oct 23;6(11):4546-56. doi: 10.1364/BOE.6.004546. eCollection 2015 Nov 1.
9
Bringing CLARITY to gray matter atrophy.
Neuroimage. 2014 Nov 1;101:625-32. doi: 10.1016/j.neuroimage.2014.07.017. Epub 2014 Jul 16.
10
Evaluation of coils for imaging histological slides: signal-to-noise ratio and filling factor.
Magn Reson Med. 2014 May;71(5):1932-43. doi: 10.1002/mrm.24841. Epub 2013 Jul 15.

本文引用的文献

1
In vivo multiple-mouse MRI at 7 Tesla.
Magn Reson Med. 2005 Nov;54(5):1311-6. doi: 10.1002/mrm.20683.
2
A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy.
Neuroscience. 2005;135(4):1203-15. doi: 10.1016/j.neuroscience.2005.07.014. Epub 2005 Sep 13.
3
Fast spin-echo for multiple mouse magnetic resonance phenotyping.
Magn Reson Med. 2005 Sep;54(3):532-7. doi: 10.1002/mrm.20590.
4
Neuroanatomical differences between mouse strains as shown by high-resolution 3D MRI.
Neuroimage. 2006 Jan 1;29(1):99-105. doi: 10.1016/j.neuroimage.2005.07.008. Epub 2005 Aug 9.
6
Electrocorticographic and deep intracerebral EEG recording in mice using a telemetry system.
Brain Res Brain Res Protoc. 2005 Apr;14(3):154-64. doi: 10.1016/j.brainresprot.2004.12.006.
8
Morphometric analysis of lateral ventricles in schizophrenia and healthy controls regarding genetic and disease-specific factors.
Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4872-7. doi: 10.1073/pnas.0501117102. Epub 2005 Mar 16.
9
A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability.
Cereb Cortex. 2005 May;15(5):639-45. doi: 10.1093/cercor/bhh165. Epub 2004 Sep 1.
10
Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: a magnetic resonance microscopy and stereologic analysis.
Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1381-6. doi: 10.1073/pnas.242746599. Epub 2003 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验