Suppr超能文献

缺氧通过由mTOR控制且在乳腺癌细胞中解偶联的4E-BP1和延伸因子2激酶途径抑制蛋白质合成。

Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells.

作者信息

Connolly Eileen, Braunstein Steve, Formenti Silvia, Schneider Robert J

机构信息

Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA.

出版信息

Mol Cell Biol. 2006 May;26(10):3955-65. doi: 10.1128/MCB.26.10.3955-3965.2006.

Abstract

Hypoxia is a state of low oxygen availability that limits tumor growth. The mechanism of protein synthesis inhibition by hypoxia and its circumvention by transformation are not well understood. Hypoxic breast epithelial cells are shown to downregulate protein synthesis by inhibition of the kinase mTOR, which suppresses mRNA translation through a novel mechanism mitigated in transformed cells: disruption of proteasome-targeted degradation of eukaryotic elongation factor 2 (eEF2) kinase and activation of the regulatory protein 4E-BP1. In transformed breast epithelial cells under hypoxia, the mTOR and S6 kinases are constitutively activated and the mTOR negative regulator tuberous sclerosis complex 2 (TSC2) protein fails to function. Gene silencing of 4E-BP1 and eEF2 kinase or TSC2 confers resistance to hypoxia inhibition of protein synthesis in immortalized breast epithelial cells. Breast cancer cells therefore acquire resistance to hypoxia by uncoupling oxygen-responsive signaling pathways from mTOR function, eliminating inhibition of protein synthesis mediated by 4E-BP1 and eEF2.

摘要

缺氧是一种氧供应不足的状态,它会限制肿瘤生长。缺氧抑制蛋白质合成的机制及其通过转化得以规避的机制尚未完全明确。研究表明,缺氧的乳腺上皮细胞通过抑制激酶mTOR来下调蛋白质合成,mTOR通过一种在转化细胞中得以缓解的新机制抑制mRNA翻译:破坏蛋白酶体靶向降解真核生物延伸因子2(eEF2)激酶并激活调节蛋白4E-BP1。在缺氧条件下的转化乳腺上皮细胞中,mTOR和S6激酶持续激活,mTOR负调节因子结节性硬化复合物2(TSC2)蛋白无法发挥作用。对4E-BP1、eEF2激酶或TSC2进行基因沉默可使永生化乳腺上皮细胞对缺氧抑制蛋白质合成产生抗性。因此,乳腺癌细胞通过使氧反应信号通路与mTOR功能解偶联,消除由4E-BP1和eEF2介导的蛋白质合成抑制,从而获得对缺氧的抗性。

相似文献

2
Hypoxia-induced energy stress regulates mRNA translation and cell growth.
Mol Cell. 2006 Feb 17;21(4):521-31. doi: 10.1016/j.molcel.2006.01.010.
3
Activation of mRNA translation in rat cardiac myocytes by insulin involves multiple rapamycin-sensitive steps.
Am J Physiol Heart Circ Physiol. 2000 Apr;278(4):H1056-68. doi: 10.1152/ajpheart.2000.278.4.H1056.
5
The mTOR Targets 4E-BP1/2 Restrain Tumor Growth and Promote Hypoxia Tolerance in PTEN-driven Prostate Cancer.
Mol Cancer Res. 2018 Apr;16(4):682-695. doi: 10.1158/1541-7786.MCR-17-0696. Epub 2018 Feb 16.
6
AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions.
J Appl Physiol (1985). 2008 Mar;104(3):625-32. doi: 10.1152/japplphysiol.00915.2007. Epub 2008 Jan 10.
7
Identification of a conserved motif required for mTOR signaling.
Curr Biol. 2002 Apr 16;12(8):632-9. doi: 10.1016/s0960-9822(02)00762-5.
8
Helicobacter pylori promotes eukaryotic protein translation by activating phosphatidylinositol 3 kinase/mTOR.
Int J Biochem Cell Biol. 2014 Oct;55:157-63. doi: 10.1016/j.biocel.2014.08.023. Epub 2014 Sep 4.

引用本文的文献

1
3
Effects of hypoxia stress on the milk synthesis in bovine mammary epithelial cells.
J Anim Sci Biotechnol. 2025 Mar 7;16(1):37. doi: 10.1186/s40104-025-01174-0.
4
Adaptation of Natural Killer Cells to Hypoxia: A Review of the Transcriptional, Translational, and Metabolic Processes.
Immunotargets Ther. 2025 Feb 18;14:99-121. doi: 10.2147/ITT.S492334. eCollection 2025.
7
Reciprocal Dynamics of Metabolism and mRNA Translation in Tumor Angiogenesis.
Int J Mol Sci. 2024 Oct 20;25(20):11284. doi: 10.3390/ijms252011284.
8
p53 Orchestrates Cancer Metabolism: Unveiling Strategies to Reverse the Warburg Effect.
Bull Math Biol. 2024 Aug 29;86(10):124. doi: 10.1007/s11538-024-01346-5.
9
The eEF2 kinase coordinates the DNA damage response to cisplatin by supporting p53 activation.
Cell Death Dis. 2024 Jul 13;15(7):501. doi: 10.1038/s41419-024-06891-4.
10
Visualization of breast cancer-related protein synthesis from the perspective of bibliometric analysis.
Eur J Med Res. 2023 Oct 27;28(1):461. doi: 10.1186/s40001-023-01364-4.

本文引用的文献

1
Hypoxia-induced energy stress regulates mRNA translation and cell growth.
Mol Cell. 2006 Feb 17;21(4):521-31. doi: 10.1016/j.molcel.2006.01.010.
2
Regulation of mTOR and cell growth in response to energy stress by REDD1.
Mol Cell Biol. 2005 Jul;25(14):5834-45. doi: 10.1128/MCB.25.14.5834-5845.2005.
3
Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase.
J Biol Chem. 2005 Jul 15;280(28):26089-93. doi: 10.1074/jbc.M504045200. Epub 2005 May 19.
4
Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase.
J Biol Chem. 2005 Jul 8;280(27):25485-90. doi: 10.1074/jbc.M501707200. Epub 2005 May 16.
6
The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway.
J Biol Chem. 2005 Mar 18;280(11):9769-72. doi: 10.1074/jbc.C400557200. Epub 2005 Jan 4.
7
Dysregulation of the TSC-mTOR pathway in human disease.
Nat Genet. 2005 Jan;37(1):19-24. doi: 10.1038/ng1494.
8
REDD1 integrates hypoxia-mediated survival signaling downstream of phosphatidylinositol 3-kinase.
Oncogene. 2005 Feb 10;24(7):1138-49. doi: 10.1038/sj.onc.1208236.
9
Translational regulation of XIAP expression and cell survival during hypoxia in human cholangiocarcinoma.
Gastroenterology. 2004 Dec;127(6):1787-97. doi: 10.1053/j.gastro.2004.09.002.
10
Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex.
Genes Dev. 2004 Dec 1;18(23):2893-904. doi: 10.1101/gad.1256804. Epub 2004 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验