Lauer M J, Pallardy S G, Blevins D G, Randall D D
Department of Agronomy, University of Missouri, Columbia, Missouri 65211.
Plant Physiol. 1989 Nov;91(3):848-54. doi: 10.1104/pp.91.3.848.
Low phosphate nutrition results in increased chlorophyll fluorescence, reduced photosynthetic rate, accumulation of starch and sucrose in leaves, and low crop yields. This study investigated physiological responses of soybean (Glycine max [L.] Merr.) leaves to low inorganic phosphate (Pi) conditions. Responses of photosynthesis to light and CO(2) were examined for leaves of soybean grown at high (0.50 millimolar) or low (0.05 millimolar) Pi. Leaves of low Pi plants exhibited paraheliotropic orientation on bright sunny days rather than the normal diaheliotropic orientation exhibited by leaves of high Pi soybeans. Leaves of plants grown at high Pi had significantly higher light saturation points (1000 versus 630 micromole photons [400-700 nanometers] per square meter per second) and higher apparent quantum efficiency (0.062 versus 0.044 mole CO(2) per mole photons) at ambient (34 pascals) CO(2) than did low Pi leaves, yet stomatal conductances were similar. High Pi leaves also had significantly higher carboxylation efficiency (2.90 versus 0.49 micromole CO(2) per square meter per second per pascal), a lower CO(2) compensation point (6.9 versus 11.9 pascals), and a higher photosynthetic rate at 34 pascals CO(2) (19.5 versus 6.7 micromoles CO(2) per square meter per second) than did low Pi leaves. Soluble protein (0.94 versus 0.73 milligram per square centimeter), ribulose-1,5-bisphosphate carboxylase/oxygenase content (0.33 versus 0.25 milligram per square centimeter), and ribulose-1,5-bisphosphate carboxylase/oxygenase specific activity (25.0 versus 16.7 micromoles per square meter per second) were significantly greater in leaves of plants in the high Pi treatment. The data indicate that Pi stress alters the plant's CO(2) reduction characteristics, which may in turn affect the plant's capacity to accommodate normal radiation loads.
低磷营养会导致叶绿素荧光增加、光合速率降低、叶片中淀粉和蔗糖积累以及作物产量降低。本研究调查了大豆(Glycine max [L.] Merr.)叶片对低无机磷(Pi)条件的生理响应。对生长在高(0.50毫摩尔)或低(0.05毫摩尔)Pi水平下的大豆叶片进行了光合作用对光和二氧化碳的响应检测。低Pi植株的叶片在阳光充足的日子里表现出避日性取向,而不是高Pi大豆叶片所表现出的正常向日性取向。在环境(34帕斯卡)二氧化碳条件下,高Pi生长的植株叶片具有显著更高的光饱和点(分别为1000和630微摩尔光子[400 - 700纳米]/平方米·秒)和更高的表观量子效率(分别为0.062和0.044摩尔二氧化碳/摩尔光子),但气孔导度相似。高Pi叶片还具有显著更高的羧化效率(分别为2.90和0.49微摩尔二氧化碳/平方米·秒·帕斯卡)、更低的二氧化碳补偿点(分别为6.9和11.9帕斯卡)以及在34帕斯卡二氧化碳条件下更高的光合速率(分别为19.5和6.7微摩尔二氧化碳/平方米·秒)。高Pi处理植株叶片中的可溶性蛋白(分别为0.94和0.73毫克/平方厘米)、1,5 - 二磷酸核酮糖羧化酶/加氧酶含量(分别为0.33和0.25毫克/平方厘米)以及1,5 - 二磷酸核酮糖羧化酶/加氧酶比活性(分别为25.0和16.7微摩尔/平方米·秒)显著更高。数据表明,Pi胁迫改变了植物的二氧化碳还原特性,这可能进而影响植物适应正常辐射负荷的能力。