Suppr超能文献

炭疽芽孢杆菌在禾本科植物根际的增殖、存活及基因交换

Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants.

作者信息

Saile Elke, Koehler Theresa M

机构信息

Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, 6431 Fannin St., JFB 1.765, Houston, TX 77030, USA.

出版信息

Appl Environ Microbiol. 2006 May;72(5):3168-74. doi: 10.1128/AEM.72.5.3168-3174.2006.

Abstract

Bacillus anthracis, the causative agent of anthrax, is known for its rapid proliferation and dissemination in mammalian hosts. In contrast, little information exists regarding the lifestyle of this important pathogen outside of the host. Considering that Bacillus species, including close relatives of B. anthracis, are saprophytic soil organisms, we investigated the capacity of B. anthracis spores to germinate in the rhizosphere and to establish populations of vegetative cells that could support horizontal gene transfer in the soil. Using a simple grass plant-soil model system, we show that B. anthracis strains germinate on and around roots, growing in characteristic long filaments. From 2 to 4 days postinoculation, approximately one-half of the B. anthracis CFU recovered from soil containing grass seedlings arose from heat-sensitive organisms, while B. anthracis CFU retrieved from soil without plants consisted of primarily heat-resistant spores. Co-inoculation of the plant-soil system with spores of a fertile B. anthracis strain carrying the tetracycline resistance plasmid pBC16 and a selectable B. anthracis recipient strain resulted in transfer of pBC16 from the donor to the recipient as early as 3 days postinoculation. Our findings demonstrate that B. anthracis can survive as a saprophyte outside of the host. The data suggest that horizontal gene transfer in the rhizosphere of grass plants may play a role in the evolution of the Bacillus cereus group species.

摘要

炭疽芽孢杆菌是炭疽病的病原体,以其在哺乳动物宿主体内的快速增殖和传播而闻名。相比之下,关于这种重要病原体在宿主体外的生活方式的信息却很少。鉴于包括炭疽芽孢杆菌近亲在内的芽孢杆菌属是腐生土壤生物,我们研究了炭疽芽孢杆菌孢子在根际发芽并建立能够支持土壤中水平基因转移的营养细胞群体的能力。使用一个简单的草-土壤模型系统,我们发现炭疽芽孢杆菌菌株在根上和根周围发芽,以特征性的长丝形式生长。接种后2至4天,从含有草幼苗的土壤中回收的炭疽芽孢杆菌菌落形成单位(CFU)中,约有一半来自热敏性生物体,而从无植物土壤中回收的炭疽芽孢杆菌CFU主要由耐热孢子组成。将携带四环素抗性质粒pBC16的肥沃炭疽芽孢杆菌菌株的孢子与一个可选择的炭疽芽孢杆菌受体菌株共同接种到植物-土壤系统中,早在接种后3天就导致了pBC16从供体转移到受体。我们的研究结果表明,炭疽芽孢杆菌可以在宿主外作为腐生菌存活。数据表明,草植物根际的水平基因转移可能在蜡样芽孢杆菌群物种的进化中起作用。

相似文献

1
Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants.
Appl Environ Microbiol. 2006 May;72(5):3168-74. doi: 10.1128/AEM.72.5.3168-3174.2006.
2
Interactions between Bacillus anthracis and plants may promote anthrax transmission.
PLoS Negl Trop Dis. 2014 Jun 5;8(6):e2903. doi: 10.1371/journal.pntd.0002903. eCollection 2014 Jun.
3
Temporal dynamics in microbial soil communities at anthrax carcass sites.
BMC Microbiol. 2017 Sep 26;17(1):206. doi: 10.1186/s12866-017-1111-6.
4
Germination and amplification of anthrax spores by soil-dwelling amoebas.
Appl Environ Microbiol. 2012 Nov;78(22):8075-81. doi: 10.1128/AEM.02034-12. Epub 2012 Sep 14.
5
Spores and soil from six sides: interdisciplinarity and the environmental biology of anthrax (Bacillus anthracis).
Biol Rev Camb Philos Soc. 2018 Nov;93(4):1813-1831. doi: 10.1111/brv.12420. Epub 2018 May 6.
6
Germination and persistence of Bacillus anthracis and Bacillus thuringiensis in soil microcosms.
J Appl Microbiol. 2014 Nov;117(5):1274-82. doi: 10.1111/jam.12620. Epub 2014 Sep 13.
7
Bacillus anthracis physiology and genetics.
Mol Aspects Med. 2009 Dec;30(6):386-96. doi: 10.1016/j.mam.2009.07.004. Epub 2009 Aug 3.
8
Thermal resistance of spores from virulent strains of Bacillus anthracis and potential surrogates.
J Food Prot. 2005 Nov;68(11):2362-6. doi: 10.4315/0362-028x-68.11.2362.
9
Spore-Associated Proteins Involved in c-di-GMP Synthesis and Degradation of Bacillus anthracis.
J Bacteriol. 2021 Aug 9;203(17):e0013521. doi: 10.1128/JB.00135-21.
10
Sensitive and rapid quantitative detection of anthrax spores isolated from soil samples by real-time PCR.
Microbiol Immunol. 2003;47(10):693-9. doi: 10.1111/j.1348-0421.2003.tb03434.x.

引用本文的文献

1
Persistence in time: the hunt for at a historic tannery site in Austria reveals genetic diversity thought extinct.
Appl Environ Microbiol. 2025 Mar 19;91(3):e0173224. doi: 10.1128/aem.01732-24. Epub 2025 Feb 7.
2
Roles of host and environment in shift of primary anthrax host species in Kruger National Park.
PLoS One. 2024 Dec 6;19(12):e0314103. doi: 10.1371/journal.pone.0314103. eCollection 2024.
3
Risk factors associated with cutaneous anthrax outbreaks in humans in Bangladesh.
Front Public Health. 2024 Oct 15;12:1442937. doi: 10.3389/fpubh.2024.1442937. eCollection 2024.
4
New Insights into the Phylogeny of the A.Br.161 ("A.Br.Heroin") Clade of .
Pathogens. 2024 Jul 16;13(7):593. doi: 10.3390/pathogens13070593.
5
Antifungal potential of multi-drug-resistant : harnessing pyocyanin for candida growth inhibition.
Front Cell Infect Microbiol. 2024 May 22;14:1375872. doi: 10.3389/fcimb.2024.1375872. eCollection 2024.
6
Single domain antibodies from camelids in the treatment of microbial infections.
Front Immunol. 2024 May 17;15:1334829. doi: 10.3389/fimmu.2024.1334829. eCollection 2024.
7
Conjugation across and kin: A review.
Front Microbiol. 2022 Nov 4;13:1034440. doi: 10.3389/fmicb.2022.1034440. eCollection 2022.
8
sensu lato biofilm formation and its ecological importance.
Biofilm. 2022 Feb 15;4:100070. doi: 10.1016/j.bioflm.2022.100070. eCollection 2022 Dec.
10
Adaptation of Bacillus thuringiensis to Plant Colonization Affects Differentiation and Toxicity.
mSystems. 2021 Oct 26;6(5):e0086421. doi: 10.1128/mSystems.00864-21. Epub 2021 Oct 12.

本文引用的文献

2
Beta-lactamase gene expression in a penicillin-resistant Bacillus anthracis strain.
Antimicrob Agents Chemother. 2004 Dec;48(12):4873-7. doi: 10.1128/AAC.48.12.4873-4877.2004.
3
Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax.
Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8449-54. doi: 10.1073/pnas.0402414101. Epub 2004 May 21.
4
Distinct mutations in PlcR explain why some strains of the Bacillus cereus group are nonhemolytic.
J Bacteriol. 2004 Jun;186(11):3531-8. doi: 10.1128/JB.186.11.3531-3538.2004.
5
The roles of anthrax toxin in pathogenesis.
Curr Opin Microbiol. 2004 Feb;7(1):19-24. doi: 10.1016/j.mib.2003.12.001.
7
Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft.
Int J Syst Evol Microbiol. 2004 Jan;54(Pt 1):195-201. doi: 10.1099/ijs.0.02747-0.
9
Species differentiation of a diverse suite of Bacillus spores by mass spectrometry-based protein profiling.
Appl Environ Microbiol. 2004 Jan;70(1):475-82. doi: 10.1128/AEM.70.1.475-482.2004.
10
A new enzymatic method for the detachment of particle associated soil bacteria.
J Microbiol Methods. 2003 Oct;55(1):201-11. doi: 10.1016/s0167-7012(03)00144-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验