Guhaniyogi Jayita, Robinson Victoria L, Stock Ann M
Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA.
J Mol Biol. 2006 Jun 9;359(3):624-45. doi: 10.1016/j.jmb.2006.03.050. Epub 2006 Apr 6.
Chemotaxis, the environment-specific swimming behavior of a bacterial cell is controlled by flagellar rotation. The steady-state level of the phosphorylated or activated form of the response regulator CheY dictates the direction of flagellar rotation. CheY phosphorylation is regulated by a fine equilibrium of three phosphotransfer activities: phosphorylation by the kinase CheA, its auto-dephosphorylation and dephosphorylation by its phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two spatially distinct protein-protein contacts: tethering of the two proteins to each other and formation of an active site for dephosphorylation. The former involves interaction of phosphorylated CheY with the small highly conserved C-terminal helix of CheZ (CheZ(C)), an indispensable structural component of the functional CheZ protein. To understand how the CheZ(C) helix, representing less than 10% of the full-length protein, ascertains molecular specificity of binding to CheY, we have determined crystal structures of CheY in complex with a synthetic peptide corresponding to 15 C-terminal residues of CheZ (CheZ(200-214)) at resolutions ranging from 2.0 A to 2.3A. These structures provide a detailed view of the CheZ(C) peptide interaction both in the presence and absence of the phosphoryl analog, BeF3-. Our studies reveal that two different modes of binding the CheZ(200-214) peptide are dictated by the conformational state of CheY in the complex. Our structures suggest that the CheZ(C) helix binds to a "meta-active" conformation of inactive CheY and it does so in an orientation that is distinct from the one in which it binds activated CheY. Our dual binding mode hypothesis provides implications for reverse information flow in CheY and extends previous observations on inherent resilience in CheY-like signaling domains.
趋化作用,即细菌细胞特定环境下的游动行为,受鞭毛旋转控制。应答调节蛋白CheY的磷酸化或激活形式的稳态水平决定了鞭毛旋转的方向。CheY的磷酸化由三种磷酸转移活性的精细平衡调节:激酶CheA的磷酸化、其自身去磷酸化以及磷酸酶CheZ的去磷酸化。CheZ对CheY的高效去磷酸化需要两个空间上不同的蛋白质 - 蛋白质接触:两种蛋白质相互拴系以及形成去磷酸化活性位点。前者涉及磷酸化的CheY与CheZ高度保守的小C端螺旋(CheZ(C))的相互作用,CheZ(C)是功能性CheZ蛋白不可或缺的结构成分。为了理解占全长蛋白不到10%的CheZ(C)螺旋如何确定与CheY结合的分子特异性,我们测定了CheY与对应CheZ 15个C端残基的合成肽(CheZ(200 - 214))复合物的晶体结构,分辨率范围为2.0 Å至2.3 Å。这些结构详细展示了在存在和不存在磷酰类似物BeF3-的情况下CheZ(C)肽的相互作用。我们的研究表明,CheZ(200 - 214)肽的两种不同结合模式由复合物中CheY的构象状态决定。我们的结构表明,CheZ(C)螺旋与无活性CheY的“超活性”构象结合,其结合方向与它结合激活的CheY时不同。我们的双重结合模式假说对CheY中的反向信息流有启示,并扩展了先前关于CheY样信号域固有弹性的观察结果。