Suppr超能文献

不含氟化铍和结合氟化铍的CheY与CheZ保守C端肽形成复合物的晶体结构揭示了特定于CheY构象的双重结合模式。

Crystal structures of beryllium fluoride-free and beryllium fluoride-bound CheY in complex with the conserved C-terminal peptide of CheZ reveal dual binding modes specific to CheY conformation.

作者信息

Guhaniyogi Jayita, Robinson Victoria L, Stock Ann M

机构信息

Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA.

出版信息

J Mol Biol. 2006 Jun 9;359(3):624-45. doi: 10.1016/j.jmb.2006.03.050. Epub 2006 Apr 6.

Abstract

Chemotaxis, the environment-specific swimming behavior of a bacterial cell is controlled by flagellar rotation. The steady-state level of the phosphorylated or activated form of the response regulator CheY dictates the direction of flagellar rotation. CheY phosphorylation is regulated by a fine equilibrium of three phosphotransfer activities: phosphorylation by the kinase CheA, its auto-dephosphorylation and dephosphorylation by its phosphatase CheZ. Efficient dephosphorylation of CheY by CheZ requires two spatially distinct protein-protein contacts: tethering of the two proteins to each other and formation of an active site for dephosphorylation. The former involves interaction of phosphorylated CheY with the small highly conserved C-terminal helix of CheZ (CheZ(C)), an indispensable structural component of the functional CheZ protein. To understand how the CheZ(C) helix, representing less than 10% of the full-length protein, ascertains molecular specificity of binding to CheY, we have determined crystal structures of CheY in complex with a synthetic peptide corresponding to 15 C-terminal residues of CheZ (CheZ(200-214)) at resolutions ranging from 2.0 A to 2.3A. These structures provide a detailed view of the CheZ(C) peptide interaction both in the presence and absence of the phosphoryl analog, BeF3-. Our studies reveal that two different modes of binding the CheZ(200-214) peptide are dictated by the conformational state of CheY in the complex. Our structures suggest that the CheZ(C) helix binds to a "meta-active" conformation of inactive CheY and it does so in an orientation that is distinct from the one in which it binds activated CheY. Our dual binding mode hypothesis provides implications for reverse information flow in CheY and extends previous observations on inherent resilience in CheY-like signaling domains.

摘要

趋化作用,即细菌细胞特定环境下的游动行为,受鞭毛旋转控制。应答调节蛋白CheY的磷酸化或激活形式的稳态水平决定了鞭毛旋转的方向。CheY的磷酸化由三种磷酸转移活性的精细平衡调节:激酶CheA的磷酸化、其自身去磷酸化以及磷酸酶CheZ的去磷酸化。CheZ对CheY的高效去磷酸化需要两个空间上不同的蛋白质 - 蛋白质接触:两种蛋白质相互拴系以及形成去磷酸化活性位点。前者涉及磷酸化的CheY与CheZ高度保守的小C端螺旋(CheZ(C))的相互作用,CheZ(C)是功能性CheZ蛋白不可或缺的结构成分。为了理解占全长蛋白不到10%的CheZ(C)螺旋如何确定与CheY结合的分子特异性,我们测定了CheY与对应CheZ 15个C端残基的合成肽(CheZ(200 - 214))复合物的晶体结构,分辨率范围为2.0 Å至2.3 Å。这些结构详细展示了在存在和不存在磷酰类似物BeF3-的情况下CheZ(C)肽的相互作用。我们的研究表明,CheZ(200 - 214)肽的两种不同结合模式由复合物中CheY的构象状态决定。我们的结构表明,CheZ(C)螺旋与无活性CheY的“超活性”构象结合,其结合方向与它结合激活的CheY时不同。我们的双重结合模式假说对CheY中的反向信息流有启示,并扩展了先前关于CheY样信号域固有弹性的观察结果。

相似文献

2
Interaction of CheY with the C-terminal peptide of CheZ.
J Bacteriol. 2008 Feb;190(4):1419-28. doi: 10.1128/JB.01414-07. Epub 2007 Dec 14.
5
Mutations in the chemotactic response regulator, CheY, that confer resistance to the phosphatase activity of CheZ.
Mol Microbiol. 1995 Mar;15(6):1069-79. doi: 10.1111/j.1365-2958.1995.tb02282.x.
6
The CheZ-binding surface of CheY overlaps the CheA- and FliM-binding surfaces.
J Biol Chem. 1997 Sep 19;272(38):23758-64. doi: 10.1074/jbc.272.38.23758.
8
Crystal structure of an activated response regulator bound to its target.
Nat Struct Biol. 2001 Jan;8(1):52-6. doi: 10.1038/83053.
9
Phosphorylation and binding interactions of CheY studied by use of Badan-labeled protein.
Biochemistry. 2004 Jul 13;43(27):8766-77. doi: 10.1021/bi0495735.

引用本文的文献

1
Structural basis of the bacterial flagellar motor rotational switching.
Cell Res. 2024 Nov;34(11):788-801. doi: 10.1038/s41422-024-01017-z. Epub 2024 Aug 23.
2
The Solvation of the CheY Phosphorylation Site Mapped by XFMS.
Int J Mol Sci. 2022 Oct 23;23(21):12771. doi: 10.3390/ijms232112771.
3
The W-Acidic Motif of Histidine Kinase WalK Is Required for Signaling and Transcriptional Regulation in .
Front Microbiol. 2022 Apr 26;13:820089. doi: 10.3389/fmicb.2022.820089. eCollection 2022.
5
Structural characterization of the ANTAR antiterminator domain bound to RNA.
Nucleic Acids Res. 2022 Mar 21;50(5):2889-2904. doi: 10.1093/nar/gkac074.
6
Role of Position K+4 in the Phosphorylation and Dephosphorylation Reaction Kinetics of the CheY Response Regulator.
Biochemistry. 2021 Jul 6;60(26):2130-2151. doi: 10.1021/acs.biochem.1c00246. Epub 2021 Jun 24.
7
Evidence for Pentapeptide-Dependent and Independent CheB Methylesterases.
Int J Mol Sci. 2020 Nov 11;21(22):8459. doi: 10.3390/ijms21228459.
8
Structure of the archaeal chemotaxis protein CheY in a domain-swapped dimeric conformation.
Acta Crystallogr F Struct Biol Commun. 2019 Sep 1;75(Pt 9):576-585. doi: 10.1107/S2053230X19010896. Epub 2019 Aug 30.
9
High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock.
PLoS Comput Biol. 2017 Dec 27;13(12):e1005905. doi: 10.1371/journal.pcbi.1005905. eCollection 2017 Dec.
10
Conformational dynamics are a key factor in signaling mediated by the receiver domain of a sensor histidine kinase from .
J Biol Chem. 2017 Oct 20;292(42):17525-17540. doi: 10.1074/jbc.M117.790212. Epub 2017 Aug 31.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
A common dimerization interface in bacterial response regulators KdpE and TorR.
Protein Sci. 2005 Dec;14(12):3077-88. doi: 10.1110/ps.051722805.
6
Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli.
J Bacteriol. 2005 Jan;187(1):45-53. doi: 10.1128/JB.187.1.45-53.2005.
7
Making sense of it all: bacterial chemotaxis.
Nat Rev Mol Cell Biol. 2004 Dec;5(12):1024-37. doi: 10.1038/nrm1524.
8
Single-cell FRET imaging of phosphatase activity in the Escherichia coli chemotaxis system.
Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17072-7. doi: 10.1073/pnas.0407812101. Epub 2004 Nov 29.
10
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验